Author: Jerome R. Busemeyer
Publisher: SAGE
ISBN: 0761924507
Category : Psychology
Languages : en
Pages : 225
Book Description
Responding to an explosion of new mathematical and computational models used in the fields of cognitive science, this book provides simple tutorials concerning the development and testing of such models. The authors focus on a few key models, with a primary goal of equipping readers with the fundamental principles, methods, and tools necessary for evaluating and testing any type of model encountered in the field of cognitive science.
Cognitive Modeling
Author: Jerome R. Busemeyer
Publisher: SAGE
ISBN: 0761924507
Category : Psychology
Languages : en
Pages : 225
Book Description
Responding to an explosion of new mathematical and computational models used in the fields of cognitive science, this book provides simple tutorials concerning the development and testing of such models. The authors focus on a few key models, with a primary goal of equipping readers with the fundamental principles, methods, and tools necessary for evaluating and testing any type of model encountered in the field of cognitive science.
Publisher: SAGE
ISBN: 0761924507
Category : Psychology
Languages : en
Pages : 225
Book Description
Responding to an explosion of new mathematical and computational models used in the fields of cognitive science, this book provides simple tutorials concerning the development and testing of such models. The authors focus on a few key models, with a primary goal of equipping readers with the fundamental principles, methods, and tools necessary for evaluating and testing any type of model encountered in the field of cognitive science.
Cognitive Modeling
Author: Thad A. Polk
Publisher: MIT Press
ISBN: 9780262661164
Category : Psychology
Languages : en
Pages : 1300
Book Description
A comprehensive introduction to the computational modeling of human cognition.
Publisher: MIT Press
ISBN: 9780262661164
Category : Psychology
Languages : en
Pages : 1300
Book Description
A comprehensive introduction to the computational modeling of human cognition.
Bayesian Cognitive Modeling
Author: Michael D. Lee
Publisher: Cambridge University Press
ISBN: 1107653916
Category : Psychology
Languages : en
Pages : 279
Book Description
Bayesian inference has become a standard method of analysis in many fields of science. Students and researchers in experimental psychology and cognitive science, however, have failed to take full advantage of the new and exciting possibilities that the Bayesian approach affords. Ideal for teaching and self study, this book demonstrates how to do Bayesian modeling. Short, to-the-point chapters offer examples, exercises, and computer code (using WinBUGS or JAGS, and supported by Matlab and R), with additional support available online. No advance knowledge of statistics is required and, from the very start, readers are encouraged to apply and adjust Bayesian analyses by themselves. The book contains a series of chapters on parameter estimation and model selection, followed by detailed case studies from cognitive science. After working through this book, readers should be able to build their own Bayesian models, apply the models to their own data, and draw their own conclusions.
Publisher: Cambridge University Press
ISBN: 1107653916
Category : Psychology
Languages : en
Pages : 279
Book Description
Bayesian inference has become a standard method of analysis in many fields of science. Students and researchers in experimental psychology and cognitive science, however, have failed to take full advantage of the new and exciting possibilities that the Bayesian approach affords. Ideal for teaching and self study, this book demonstrates how to do Bayesian modeling. Short, to-the-point chapters offer examples, exercises, and computer code (using WinBUGS or JAGS, and supported by Matlab and R), with additional support available online. No advance knowledge of statistics is required and, from the very start, readers are encouraged to apply and adjust Bayesian analyses by themselves. The book contains a series of chapters on parameter estimation and model selection, followed by detailed case studies from cognitive science. After working through this book, readers should be able to build their own Bayesian models, apply the models to their own data, and draw their own conclusions.
Introduction to Modeling Cognitive Processes
Author: Tom Verguts
Publisher: MIT Press
ISBN: 0262362317
Category : Science
Languages : en
Pages : 265
Book Description
An introduction to computational modeling for cognitive neuroscientists, covering both foundational work and recent developments. Cognitive neuroscientists need sophisticated conceptual tools to make sense of their field’s proliferation of novel theories, methods, and data. Computational modeling is such a tool, enabling researchers to turn theories into precise formulations. This book offers a mathematically gentle and theoretically unified introduction to modeling cognitive processes. Theoretical exercises of varying degrees of difficulty throughout help readers develop their modeling skills. After a general introduction to cognitive modeling and optimization, the book covers models of decision making; supervised learning algorithms, including Hebbian learning, delta rule, and backpropagation; the statistical model analysis methods of model parameter estimation and model evaluation; the three recent cognitive modeling approaches of reinforcement learning, unsupervised learning, and Bayesian models; and models of social interaction. All mathematical concepts are introduced gradually, with no background in advanced topics required. Hints and solutions for exercises and a glossary follow the main text. All code in the book is Python, with the Spyder editor in the Anaconda environment. A GitHub repository with Python files enables readers to access the computer code used and start programming themselves. The book is suitable as an introduction to modeling cognitive processes for students across a range of disciplines and as a reference for researchers interested in a broad overview.
Publisher: MIT Press
ISBN: 0262362317
Category : Science
Languages : en
Pages : 265
Book Description
An introduction to computational modeling for cognitive neuroscientists, covering both foundational work and recent developments. Cognitive neuroscientists need sophisticated conceptual tools to make sense of their field’s proliferation of novel theories, methods, and data. Computational modeling is such a tool, enabling researchers to turn theories into precise formulations. This book offers a mathematically gentle and theoretically unified introduction to modeling cognitive processes. Theoretical exercises of varying degrees of difficulty throughout help readers develop their modeling skills. After a general introduction to cognitive modeling and optimization, the book covers models of decision making; supervised learning algorithms, including Hebbian learning, delta rule, and backpropagation; the statistical model analysis methods of model parameter estimation and model evaluation; the three recent cognitive modeling approaches of reinforcement learning, unsupervised learning, and Bayesian models; and models of social interaction. All mathematical concepts are introduced gradually, with no background in advanced topics required. Hints and solutions for exercises and a glossary follow the main text. All code in the book is Python, with the Spyder editor in the Anaconda environment. A GitHub repository with Python files enables readers to access the computer code used and start programming themselves. The book is suitable as an introduction to modeling cognitive processes for students across a range of disciplines and as a reference for researchers interested in a broad overview.
Cognitive Choice Modeling
Author: Zheng Joyce Wang
Publisher: MIT Press
ISBN: 0262361655
Category : Science
Languages : en
Pages : 305
Book Description
The emerging interdisciplinary field of cognitive choice models integrates theory and recent research findings from both decision process and choice behavior. Cognitive decision processes provide the interface between the environment and brain, enabling choice behavior, and the basic cognitive mechanisms underlying decision processes are fundamental to all fields of human activity. Yet cognitive processes and choice processes are often studied separately, whether by decision theorists, consumer researchers, or social scientists. In Cognitive Choice Modeling, Zheng Joyce Wang and Jerome R. Busemeyer introduce a new cognitive modeling approach to the study of human choice behavior. Integrating recent research findings from both cognitive science and choice behavior, they lay the groundwork for the emerging interdisciplinary field of cognitive choice modeling.
Publisher: MIT Press
ISBN: 0262361655
Category : Science
Languages : en
Pages : 305
Book Description
The emerging interdisciplinary field of cognitive choice models integrates theory and recent research findings from both decision process and choice behavior. Cognitive decision processes provide the interface between the environment and brain, enabling choice behavior, and the basic cognitive mechanisms underlying decision processes are fundamental to all fields of human activity. Yet cognitive processes and choice processes are often studied separately, whether by decision theorists, consumer researchers, or social scientists. In Cognitive Choice Modeling, Zheng Joyce Wang and Jerome R. Busemeyer introduce a new cognitive modeling approach to the study of human choice behavior. Integrating recent research findings from both cognitive science and choice behavior, they lay the groundwork for the emerging interdisciplinary field of cognitive choice modeling.
Computational Cognitive Modeling and Linguistic Theory
Author: Adrian Brasoveanu
Publisher: Springer Nature
ISBN: 303031846X
Category : Language and languages
Languages : en
Pages : 299
Book Description
This open access book introduces a general framework that allows natural language researchers to enhance existing competence theories with fully specified performance and processing components. Gradually developing increasingly complex and cognitively realistic competence-performance models, it provides running code for these models and shows how to fit them to real-time experimental data. This computational cognitive modeling approach opens up exciting new directions for research in formal semantics, and linguistics more generally, and offers new ways of (re)connecting semantics and the broader field of cognitive science. The approach of this book is novel in more ways than one. Assuming the mental architecture and procedural modalities of Anderson's ACT-R framework, it presents fine-grained computational models of human language processing tasks which make detailed quantitative predictions that can be checked against the results of self-paced reading and other psycho-linguistic experiments. All models are presented as computer programs that readers can run on their own computer and on inputs of their choice, thereby learning to design, program and run their own models. But even for readers who won't do all that, the book will show how such detailed, quantitatively predicting modeling of linguistic processes is possible. A methodological breakthrough and a must for anyone concerned about the future of linguistics! (Hans Kamp) This book constitutes a major step forward in linguistics and psycholinguistics. It constitutes a unique synthesis of several different research traditions: computational models of psycholinguistic processes, and formal models of semantics and discourse processing. The work also introduces a sophisticated python-based software environment for modeling linguistic processes. This book has the potential to revolutionize not only formal models of linguistics, but also models of language processing more generally. (Shravan Vasishth) .
Publisher: Springer Nature
ISBN: 303031846X
Category : Language and languages
Languages : en
Pages : 299
Book Description
This open access book introduces a general framework that allows natural language researchers to enhance existing competence theories with fully specified performance and processing components. Gradually developing increasingly complex and cognitively realistic competence-performance models, it provides running code for these models and shows how to fit them to real-time experimental data. This computational cognitive modeling approach opens up exciting new directions for research in formal semantics, and linguistics more generally, and offers new ways of (re)connecting semantics and the broader field of cognitive science. The approach of this book is novel in more ways than one. Assuming the mental architecture and procedural modalities of Anderson's ACT-R framework, it presents fine-grained computational models of human language processing tasks which make detailed quantitative predictions that can be checked against the results of self-paced reading and other psycho-linguistic experiments. All models are presented as computer programs that readers can run on their own computer and on inputs of their choice, thereby learning to design, program and run their own models. But even for readers who won't do all that, the book will show how such detailed, quantitatively predicting modeling of linguistic processes is possible. A methodological breakthrough and a must for anyone concerned about the future of linguistics! (Hans Kamp) This book constitutes a major step forward in linguistics and psycholinguistics. It constitutes a unique synthesis of several different research traditions: computational models of psycholinguistic processes, and formal models of semantics and discourse processing. The work also introduces a sophisticated python-based software environment for modeling linguistic processes. This book has the potential to revolutionize not only formal models of linguistics, but also models of language processing more generally. (Shravan Vasishth) .
Introduction to Neural and Cognitive Modeling
Author: Daniel S. Levine
Publisher: Psychology Press
ISBN: 1135692246
Category : Psychology
Languages : en
Pages : 573
Book Description
This thoroughly, thoughtfully revised edition of a very successful textbook makes the principles and the details of neural network modeling accessible to cognitive scientists of all varieties as well as to others interested in these models. Research since the publication of the first edition has been systematically incorporated into a framework of proven pedagogical value. Features of the second edition include: * A new section on spatiotemporal pattern processing * Coverage of ARTMAP networks (the supervised version of adaptive resonance networks) and recurrent back-propagation networks * A vastly expanded section on models of specific brain areas, such as the cerebellum, hippocampus, basal ganglia, and visual and motor cortex * Up-to-date coverage of applications of neural networks in areas such as combinatorial optimization and knowledge representation As in the first edition, the text includes extensive introductions to neuroscience and to differential and difference equations as appendices for students without the requisite background in these areas. As graphically revealed in the flowchart in the front of the book, the text begins with simpler processes and builds up to more complex multilevel functional systems. For more information visit the author's personal Web site at www.uta.edu/psychology/faculty/levine/
Publisher: Psychology Press
ISBN: 1135692246
Category : Psychology
Languages : en
Pages : 573
Book Description
This thoroughly, thoughtfully revised edition of a very successful textbook makes the principles and the details of neural network modeling accessible to cognitive scientists of all varieties as well as to others interested in these models. Research since the publication of the first edition has been systematically incorporated into a framework of proven pedagogical value. Features of the second edition include: * A new section on spatiotemporal pattern processing * Coverage of ARTMAP networks (the supervised version of adaptive resonance networks) and recurrent back-propagation networks * A vastly expanded section on models of specific brain areas, such as the cerebellum, hippocampus, basal ganglia, and visual and motor cortex * Up-to-date coverage of applications of neural networks in areas such as combinatorial optimization and knowledge representation As in the first edition, the text includes extensive introductions to neuroscience and to differential and difference equations as appendices for students without the requisite background in these areas. As graphically revealed in the flowchart in the front of the book, the text begins with simpler processes and builds up to more complex multilevel functional systems. For more information visit the author's personal Web site at www.uta.edu/psychology/faculty/levine/
Computational Neuroscience and Cognitive Modelling
Author: Britt Anderson
Publisher: SAGE
ISBN: 1446297373
Category : Psychology
Languages : en
Pages : 241
Book Description
"For the neuroscientist or psychologist who cringes at the sight of mathematical formulae and whose eyes glaze over at terms like differential equations, linear algebra, vectors, matrices, Bayes’ rule, and Boolean logic, this book just might be the therapy needed." - Anjan Chatterjee, Professor of Neurology, University of Pennsylvania "Anderson provides a gentle introduction to computational aspects of psychological science, managing to respect the reader’s intelligence while also being completely unintimidating. Using carefully-selected computational demonstrations, he guides students through a wide array of important approaches and tools, with little in the way of prerequisites...I recommend it with enthusiasm." - Asohan Amarasingham, The City University of New York This unique, self-contained and accessible textbook provides an introduction to computational modelling neuroscience accessible to readers with little or no background in computing or mathematics. Organized into thematic sections, the book spans from modelling integrate and firing neurons to playing the game Rock, Paper, Scissors in ACT-R. This non-technical guide shows how basic knowledge and modern computers can be combined for interesting simulations, progressing from early exercises utilizing spreadsheets, to simple programs in Python. Key Features include: Interleaved chapters that show how traditional computing constructs are simply disguised versions of the spread sheet methods. Mathematical facts and notation needed to understand the modelling methods are presented at their most basic and are interleaved with biographical and historical notes for contex. Numerous worked examples to demonstrate the themes and procedures of cognitive modelling. An excellent text for postgraduate students taking courses in research methods, computational neuroscience, computational modelling, cognitive science and neuroscience. It will be especially valuable to psychology students.
Publisher: SAGE
ISBN: 1446297373
Category : Psychology
Languages : en
Pages : 241
Book Description
"For the neuroscientist or psychologist who cringes at the sight of mathematical formulae and whose eyes glaze over at terms like differential equations, linear algebra, vectors, matrices, Bayes’ rule, and Boolean logic, this book just might be the therapy needed." - Anjan Chatterjee, Professor of Neurology, University of Pennsylvania "Anderson provides a gentle introduction to computational aspects of psychological science, managing to respect the reader’s intelligence while also being completely unintimidating. Using carefully-selected computational demonstrations, he guides students through a wide array of important approaches and tools, with little in the way of prerequisites...I recommend it with enthusiasm." - Asohan Amarasingham, The City University of New York This unique, self-contained and accessible textbook provides an introduction to computational modelling neuroscience accessible to readers with little or no background in computing or mathematics. Organized into thematic sections, the book spans from modelling integrate and firing neurons to playing the game Rock, Paper, Scissors in ACT-R. This non-technical guide shows how basic knowledge and modern computers can be combined for interesting simulations, progressing from early exercises utilizing spreadsheets, to simple programs in Python. Key Features include: Interleaved chapters that show how traditional computing constructs are simply disguised versions of the spread sheet methods. Mathematical facts and notation needed to understand the modelling methods are presented at their most basic and are interleaved with biographical and historical notes for contex. Numerous worked examples to demonstrate the themes and procedures of cognitive modelling. An excellent text for postgraduate students taking courses in research methods, computational neuroscience, computational modelling, cognitive science and neuroscience. It will be especially valuable to psychology students.
An Introduction to Model-Based Cognitive Neuroscience
Author: Birte U. Forstmann
Publisher: Springer Nature
ISBN: 3031452712
Category :
Languages : en
Pages : 384
Book Description
Publisher: Springer Nature
ISBN: 3031452712
Category :
Languages : en
Pages : 384
Book Description
Computational Modeling of Cognition and Behavior
Author: Simon Farrell
Publisher: Cambridge University Press
ISBN: 110710999X
Category : Psychology
Languages : en
Pages : 485
Book Description
This book presents an integrated framework for developing and testing computational models in psychology and related disciplines. Researchers and students are given the knowledge and tools to interpret models published in their area, as well as to develop, fit, and test their own models.
Publisher: Cambridge University Press
ISBN: 110710999X
Category : Psychology
Languages : en
Pages : 485
Book Description
This book presents an integrated framework for developing and testing computational models in psychology and related disciplines. Researchers and students are given the knowledge and tools to interpret models published in their area, as well as to develop, fit, and test their own models.