Author: Yuichiro Himeda
Publisher: John Wiley & Sons
ISBN: 3527346635
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
A guide to the effective catalysts and latest advances in CO2 conversion in chemicals and fuels Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO2 emissions to produce value-added chemicals. With contributions from an international team of experts on the topic, CO2 Hydrogenation Catalysis offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C2+ products. The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO2 hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book: Offers a unique review of effective catalysts and the latest advances in CO2 conversion Explores how to utilize CO2 emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromatics Includes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysis Highlights advances and challenges for future investigation Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers, CO2 Hydrogenation Catalysis offers a comprehensive resource to understanding how CO2 emissions can create value-added chemicals.
CO2 Hydrogenation Catalysis
Author: Yuichiro Himeda
Publisher: John Wiley & Sons
ISBN: 3527346635
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
A guide to the effective catalysts and latest advances in CO2 conversion in chemicals and fuels Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO2 emissions to produce value-added chemicals. With contributions from an international team of experts on the topic, CO2 Hydrogenation Catalysis offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C2+ products. The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO2 hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book: Offers a unique review of effective catalysts and the latest advances in CO2 conversion Explores how to utilize CO2 emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromatics Includes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysis Highlights advances and challenges for future investigation Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers, CO2 Hydrogenation Catalysis offers a comprehensive resource to understanding how CO2 emissions can create value-added chemicals.
Publisher: John Wiley & Sons
ISBN: 3527346635
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
A guide to the effective catalysts and latest advances in CO2 conversion in chemicals and fuels Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO2 emissions to produce value-added chemicals. With contributions from an international team of experts on the topic, CO2 Hydrogenation Catalysis offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C2+ products. The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO2 hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book: Offers a unique review of effective catalysts and the latest advances in CO2 conversion Explores how to utilize CO2 emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromatics Includes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysis Highlights advances and challenges for future investigation Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers, CO2 Hydrogenation Catalysis offers a comprehensive resource to understanding how CO2 emissions can create value-added chemicals.
CO2 Hydrogenation Catalysis
Author: Yuichiro Himeda
Publisher: John Wiley & Sons
ISBN: 3527824103
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
A guide to the effective catalysts and latest advances in CO2 conversion in chemicals and fuels Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO2 emissions to produce value-added chemicals. With contributions from an international team of experts on the topic, CO2 Hydrogenation Catalysis offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C2+ products. The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO2 hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book: Offers a unique review of effective catalysts and the latest advances in CO2 conversion Explores how to utilize CO2 emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromatics Includes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysis Highlights advances and challenges for future investigation Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers, CO2 Hydrogenation Catalysis offers a comprehensive resource to understanding how CO2 emissions can create value-added chemicals.
Publisher: John Wiley & Sons
ISBN: 3527824103
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
A guide to the effective catalysts and latest advances in CO2 conversion in chemicals and fuels Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO2 emissions to produce value-added chemicals. With contributions from an international team of experts on the topic, CO2 Hydrogenation Catalysis offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C2+ products. The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO2 hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book: Offers a unique review of effective catalysts and the latest advances in CO2 conversion Explores how to utilize CO2 emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromatics Includes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysis Highlights advances and challenges for future investigation Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers, CO2 Hydrogenation Catalysis offers a comprehensive resource to understanding how CO2 emissions can create value-added chemicals.
Plasma Catalysis
Author: Annemie Bogaerts
Publisher: MDPI
ISBN: 3038977500
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.
Publisher: MDPI
ISBN: 3038977500
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.
Advances in Catalysis
Author: D. D. Eley
Publisher:
ISBN: 9780120078271
Category : Catalysis
Languages : en
Pages : 399
Book Description
Publisher:
ISBN: 9780120078271
Category : Catalysis
Languages : en
Pages : 399
Book Description
Methanol Synthesis
Author: Jerzy Skrzypek
Publisher:
ISBN:
Category : Catalysis
Languages : en
Pages : 174
Book Description
Publisher:
ISBN:
Category : Catalysis
Languages : en
Pages : 174
Book Description
Homogeneous Hydrogenation
Author: P.A. Chaloner
Publisher: Springer Science & Business Media
ISBN: 9401717915
Category : Science
Languages : en
Pages : 293
Book Description
Homogeneous hydrogenation is one of the most thoroughly studied fields of homogeneous catalysis. The results of these studies have proved to be most important for an understanding of the underlying principles of the activation of small molecules by transition metal complexes. During the past three decades homogeneous hydrogenation has found widespread application in organic chemistry, including the production of important pharmaceuticals, especially where a sophisticated degree of selectivity is required. This volume presents a general account of the main principles and applications of homogeneous hydrogenation by transition metal complexes. Special attention is devoted to the mechanisms by which these processes occur, and the role of the recently discovered complexes of molecular hydrogen is described. Sources of hydrogen, other than H2, are also considered (transfer hydrogenation). The latest achievements in highly stereoselective hydrogenations have made possible many new applications in organic synthesis. These applications are documented by giving details of the reduction of important unsaturated substrates (alkenes, alkynes, aldehydes and ketones, nitrocompounds, etc.). Hydrogenation in biphasic and phase transfer catalyzed systems is also described. Finally, a discussion of the biochemical routes of H2 activation highlights the similarities and differences in performing hydrogenation in both natural and synthetic systems. For researchers working in the fields of homogeneous catalysis, especially in areas such as pharmaceuticals, plastics and fine chemicals.
Publisher: Springer Science & Business Media
ISBN: 9401717915
Category : Science
Languages : en
Pages : 293
Book Description
Homogeneous hydrogenation is one of the most thoroughly studied fields of homogeneous catalysis. The results of these studies have proved to be most important for an understanding of the underlying principles of the activation of small molecules by transition metal complexes. During the past three decades homogeneous hydrogenation has found widespread application in organic chemistry, including the production of important pharmaceuticals, especially where a sophisticated degree of selectivity is required. This volume presents a general account of the main principles and applications of homogeneous hydrogenation by transition metal complexes. Special attention is devoted to the mechanisms by which these processes occur, and the role of the recently discovered complexes of molecular hydrogen is described. Sources of hydrogen, other than H2, are also considered (transfer hydrogenation). The latest achievements in highly stereoselective hydrogenations have made possible many new applications in organic synthesis. These applications are documented by giving details of the reduction of important unsaturated substrates (alkenes, alkynes, aldehydes and ketones, nitrocompounds, etc.). Hydrogenation in biphasic and phase transfer catalyzed systems is also described. Finally, a discussion of the biochemical routes of H2 activation highlights the similarities and differences in performing hydrogenation in both natural and synthetic systems. For researchers working in the fields of homogeneous catalysis, especially in areas such as pharmaceuticals, plastics and fine chemicals.
Carbon Dioxide Utilization for Global Sustainability
Author: Sang-Eon Park
Publisher: Elsevier
ISBN: 0080472176
Category : Technology & Engineering
Languages : en
Pages : 626
Book Description
Addressing global environmental problems, such as global warming is essential to global sustainability. Continued research leads to advancement in standard methods and produces new data. Carbon Dioxide Utilization for Global Sustainability: Proceedings of the 7th ICCDU (International Conference on Carbon Dioxide Utilization) reflects the most recent research results, as well as stimulating scientific discussions with new challenges in advancing the development of carbon dioxide utilization. Drawing on a wealth of information, this well structured book will benefit students, researchers and consultants looking to catch up on current developments in environmental and chemical engineering.* Provides comprehensive data on CO2 utilisation* Contains up-to-date information, including recent research trends* Is written for students, researchers and consultants in environmental and chemical engineering
Publisher: Elsevier
ISBN: 0080472176
Category : Technology & Engineering
Languages : en
Pages : 626
Book Description
Addressing global environmental problems, such as global warming is essential to global sustainability. Continued research leads to advancement in standard methods and produces new data. Carbon Dioxide Utilization for Global Sustainability: Proceedings of the 7th ICCDU (International Conference on Carbon Dioxide Utilization) reflects the most recent research results, as well as stimulating scientific discussions with new challenges in advancing the development of carbon dioxide utilization. Drawing on a wealth of information, this well structured book will benefit students, researchers and consultants looking to catch up on current developments in environmental and chemical engineering.* Provides comprehensive data on CO2 utilisation* Contains up-to-date information, including recent research trends* Is written for students, researchers and consultants in environmental and chemical engineering
Engineering Solutions for CO2 Conversion
Author: Tomas Ramirez Reina
Publisher: John Wiley & Sons
ISBN: 3527346511
Category : Technology & Engineering
Languages : en
Pages : 498
Book Description
A comprehensive guide that offers a review of the current technologies that tackle CO2 emissions The race to reduce CO2 emissions continues to be an urgent global challenge. Engineering Solutions for CO2 Conversion offers a thorough guide to the most current technologies designed to mitigate CO2 emissions ranging from CO2 capture to CO2 utilization approaches. With contributions from an international panel representing a wide range of expertise, this book contains a multidisciplinary toolkit that covers the myriad aspects of CO2 conversion strategies. Comprehensive in scope, it explores the chemical, physical, engineering and economical facets of CO2 conversion. Engineering Solutions for CO2 Conversion explores a broad range of topics including linking CFD and process simulations, membranes technologies for efficient CO2 capture-conversion, biogas sweetening technologies, plasma-assisted conversion of CO2, and much more. This important resource: Addresses a pressing concern of global environmental damage, caused by the greenhouse gases emissions from fossil fuels Contains a review of the most current developments on the various aspects of CO2 capture and utilization strategies Incldues information on chemical, physical, engineering and economical facets of CO2 capture and utilization Offers in-depth insight into materials design, processing characterization, and computer modeling with respect to CO2 capture and conversion Written for catalytic chemists, electrochemists, process engineers, chemical engineers, chemists in industry, photochemists, environmental chemists, theoretical chemists, environmental officers, Engineering Solutions for CO2 Conversion provides the most current and expert information on the many aspects and challenges of CO2 conversion.
Publisher: John Wiley & Sons
ISBN: 3527346511
Category : Technology & Engineering
Languages : en
Pages : 498
Book Description
A comprehensive guide that offers a review of the current technologies that tackle CO2 emissions The race to reduce CO2 emissions continues to be an urgent global challenge. Engineering Solutions for CO2 Conversion offers a thorough guide to the most current technologies designed to mitigate CO2 emissions ranging from CO2 capture to CO2 utilization approaches. With contributions from an international panel representing a wide range of expertise, this book contains a multidisciplinary toolkit that covers the myriad aspects of CO2 conversion strategies. Comprehensive in scope, it explores the chemical, physical, engineering and economical facets of CO2 conversion. Engineering Solutions for CO2 Conversion explores a broad range of topics including linking CFD and process simulations, membranes technologies for efficient CO2 capture-conversion, biogas sweetening technologies, plasma-assisted conversion of CO2, and much more. This important resource: Addresses a pressing concern of global environmental damage, caused by the greenhouse gases emissions from fossil fuels Contains a review of the most current developments on the various aspects of CO2 capture and utilization strategies Incldues information on chemical, physical, engineering and economical facets of CO2 capture and utilization Offers in-depth insight into materials design, processing characterization, and computer modeling with respect to CO2 capture and conversion Written for catalytic chemists, electrochemists, process engineers, chemical engineers, chemists in industry, photochemists, environmental chemists, theoretical chemists, environmental officers, Engineering Solutions for CO2 Conversion provides the most current and expert information on the many aspects and challenges of CO2 conversion.
Catalytic Hydrogenation
Author: L. Cervený
Publisher: Elsevier
ISBN: 0080960618
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
The collection of contributions in this volume presents the most up-to-date findings in catalytic hydrogenation. The individual chapters have been written by 36 top specialists each of whom has achieved a remarkable depth of coverage when dealing with his particular topic. In addition to detailed treatment of the most recent problems connected with catalytic hydrogenations, the book also contains a number of previously unpublished results obtained either by the authors themselves or within the organizations to which they are affiliated.Because of its topical and original character, the book provides a wealth of information which will be invaluable not only to researchers and technicians dealing with hydrogenation, but also to all those concerned with homogeneous and heterogeneous catalysis, organic technology, petrochemistry and chemical engineering.
Publisher: Elsevier
ISBN: 0080960618
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
The collection of contributions in this volume presents the most up-to-date findings in catalytic hydrogenation. The individual chapters have been written by 36 top specialists each of whom has achieved a remarkable depth of coverage when dealing with his particular topic. In addition to detailed treatment of the most recent problems connected with catalytic hydrogenations, the book also contains a number of previously unpublished results obtained either by the authors themselves or within the organizations to which they are affiliated.Because of its topical and original character, the book provides a wealth of information which will be invaluable not only to researchers and technicians dealing with hydrogenation, but also to all those concerned with homogeneous and heterogeneous catalysis, organic technology, petrochemistry and chemical engineering.
Chemical Transformations of Carbon Dioxide
Author: Xiao-Feng Wu
Publisher: Springer
ISBN: 3319777572
Category : Science
Languages : en
Pages : 261
Book Description
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Publisher: Springer
ISBN: 3319777572
Category : Science
Languages : en
Pages : 261
Book Description
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.