Author: Zoi Kaoudi
Publisher: Springer Nature
ISBN: 3031018753
Category : Computers
Languages : en
Pages : 91
Book Description
Resource Description Framework (or RDF, in short) is set to deliver many of the original semi-structured data promises: flexible structure, optional schema, and rich, flexible Universal Resource Identifiers as a basis for information sharing. Moreover, RDF is uniquely positioned to benefit from the efforts of scientific communities studying databases, knowledge representation, and Web technologies. As a consequence, the RDF data model is used in a variety of applications today for integrating knowledge and information: in open Web or government data via the Linked Open Data initiative, in scientific domains such as bioinformatics, and more recently in search engines and personal assistants of enterprises in the form of knowledge graphs. Managing such large volumes of RDF data is challenging due to the sheer size, heterogeneity, and complexity brought by RDF reasoning. To tackle the size challenge, distributed architectures are required. Cloud computing is an emerging paradigm massively adopted in many applications requiring distributed architectures for the scalability, fault tolerance, and elasticity features it provides. At the same time, interest in massively parallel processing has been renewed by the MapReduce model and many follow-up works, which aim at simplifying the deployment of massively parallel data management tasks in a cloud environment. In this book, we study the state-of-the-art RDF data management in cloud environments and parallel/distributed architectures that were not necessarily intended for the cloud, but can easily be deployed therein. After providing a comprehensive background on RDF and cloud technologies, we explore four aspects that are vital in an RDF data management system: data storage, query processing, query optimization, and reasoning. We conclude the book with a discussion on open problems and future directions.
Cloud-Based RDF Data Management
Author: Zoi Kaoudi
Publisher: Springer Nature
ISBN: 3031018753
Category : Computers
Languages : en
Pages : 91
Book Description
Resource Description Framework (or RDF, in short) is set to deliver many of the original semi-structured data promises: flexible structure, optional schema, and rich, flexible Universal Resource Identifiers as a basis for information sharing. Moreover, RDF is uniquely positioned to benefit from the efforts of scientific communities studying databases, knowledge representation, and Web technologies. As a consequence, the RDF data model is used in a variety of applications today for integrating knowledge and information: in open Web or government data via the Linked Open Data initiative, in scientific domains such as bioinformatics, and more recently in search engines and personal assistants of enterprises in the form of knowledge graphs. Managing such large volumes of RDF data is challenging due to the sheer size, heterogeneity, and complexity brought by RDF reasoning. To tackle the size challenge, distributed architectures are required. Cloud computing is an emerging paradigm massively adopted in many applications requiring distributed architectures for the scalability, fault tolerance, and elasticity features it provides. At the same time, interest in massively parallel processing has been renewed by the MapReduce model and many follow-up works, which aim at simplifying the deployment of massively parallel data management tasks in a cloud environment. In this book, we study the state-of-the-art RDF data management in cloud environments and parallel/distributed architectures that were not necessarily intended for the cloud, but can easily be deployed therein. After providing a comprehensive background on RDF and cloud technologies, we explore four aspects that are vital in an RDF data management system: data storage, query processing, query optimization, and reasoning. We conclude the book with a discussion on open problems and future directions.
Publisher: Springer Nature
ISBN: 3031018753
Category : Computers
Languages : en
Pages : 91
Book Description
Resource Description Framework (or RDF, in short) is set to deliver many of the original semi-structured data promises: flexible structure, optional schema, and rich, flexible Universal Resource Identifiers as a basis for information sharing. Moreover, RDF is uniquely positioned to benefit from the efforts of scientific communities studying databases, knowledge representation, and Web technologies. As a consequence, the RDF data model is used in a variety of applications today for integrating knowledge and information: in open Web or government data via the Linked Open Data initiative, in scientific domains such as bioinformatics, and more recently in search engines and personal assistants of enterprises in the form of knowledge graphs. Managing such large volumes of RDF data is challenging due to the sheer size, heterogeneity, and complexity brought by RDF reasoning. To tackle the size challenge, distributed architectures are required. Cloud computing is an emerging paradigm massively adopted in many applications requiring distributed architectures for the scalability, fault tolerance, and elasticity features it provides. At the same time, interest in massively parallel processing has been renewed by the MapReduce model and many follow-up works, which aim at simplifying the deployment of massively parallel data management tasks in a cloud environment. In this book, we study the state-of-the-art RDF data management in cloud environments and parallel/distributed architectures that were not necessarily intended for the cloud, but can easily be deployed therein. After providing a comprehensive background on RDF and cloud technologies, we explore four aspects that are vital in an RDF data management system: data storage, query processing, query optimization, and reasoning. We conclude the book with a discussion on open problems and future directions.
Linked Data Management
Author: Andreas Harth
Publisher: CRC Press
ISBN: 1466582413
Category : Computers
Languages : en
Pages : 566
Book Description
Linked Data Management presents techniques for querying and managing Linked Data that is available on today's Web. The book shows how the abundance of Linked Data can serve as fertile ground for research and commercial applications.The text focuses on aspects of managing large-scale collections of Linked Data. It offers a detailed introduction to L
Publisher: CRC Press
ISBN: 1466582413
Category : Computers
Languages : en
Pages : 566
Book Description
Linked Data Management presents techniques for querying and managing Linked Data that is available on today's Web. The book shows how the abundance of Linked Data can serve as fertile ground for research and commercial applications.The text focuses on aspects of managing large-scale collections of Linked Data. It offers a detailed introduction to L
Secure Data Science
Author: Bhavani Thuraisingham
Publisher: CRC Press
ISBN: 1000557510
Category : Computers
Languages : en
Pages : 430
Book Description
Secure data science, which integrates cyber security and data science, is becoming one of the critical areas in both cyber security and data science. This is because the novel data science techniques being developed have applications in solving such cyber security problems as intrusion detection, malware analysis, and insider threat detection. However, the data science techniques being applied not only for cyber security but also for every application area—including healthcare, finance, manufacturing, and marketing—could be attacked by malware. Furthermore, due to the power of data science, it is now possible to infer highly private and sensitive information from public data, which could result in the violation of individual privacy. This is the first such book that provides a comprehensive overview of integrating both cyber security and data science and discusses both theory and practice in secure data science. After an overview of security and privacy for big data services as well as cloud computing, this book describes applications of data science for cyber security applications. It also discusses such applications of data science as malware analysis and insider threat detection. Then this book addresses trends in adversarial machine learning and provides solutions to the attacks on the data science techniques. In particular, it discusses some emerging trends in carrying out trustworthy analytics so that the analytics techniques can be secured against malicious attacks. Then it focuses on the privacy threats due to the collection of massive amounts of data and potential solutions. Following a discussion on the integration of services computing, including cloud-based services for secure data science, it looks at applications of secure data science to information sharing and social media. This book is a useful resource for researchers, software developers, educators, and managers who want to understand both the high level concepts and the technical details on the design and implementation of secure data science-based systems. It can also be used as a reference book for a graduate course in secure data science. Furthermore, this book provides numerous references that would be helpful for the reader to get more details about secure data science.
Publisher: CRC Press
ISBN: 1000557510
Category : Computers
Languages : en
Pages : 430
Book Description
Secure data science, which integrates cyber security and data science, is becoming one of the critical areas in both cyber security and data science. This is because the novel data science techniques being developed have applications in solving such cyber security problems as intrusion detection, malware analysis, and insider threat detection. However, the data science techniques being applied not only for cyber security but also for every application area—including healthcare, finance, manufacturing, and marketing—could be attacked by malware. Furthermore, due to the power of data science, it is now possible to infer highly private and sensitive information from public data, which could result in the violation of individual privacy. This is the first such book that provides a comprehensive overview of integrating both cyber security and data science and discusses both theory and practice in secure data science. After an overview of security and privacy for big data services as well as cloud computing, this book describes applications of data science for cyber security applications. It also discusses such applications of data science as malware analysis and insider threat detection. Then this book addresses trends in adversarial machine learning and provides solutions to the attacks on the data science techniques. In particular, it discusses some emerging trends in carrying out trustworthy analytics so that the analytics techniques can be secured against malicious attacks. Then it focuses on the privacy threats due to the collection of massive amounts of data and potential solutions. Following a discussion on the integration of services computing, including cloud-based services for secure data science, it looks at applications of secure data science to information sharing and social media. This book is a useful resource for researchers, software developers, educators, and managers who want to understand both the high level concepts and the technical details on the design and implementation of secure data science-based systems. It can also be used as a reference book for a graduate course in secure data science. Furthermore, this book provides numerous references that would be helpful for the reader to get more details about secure data science.
Managing Big Data in Cloud Computing Environments
Author: Ma, Zongmin
Publisher: IGI Global
ISBN: 1466698357
Category : Computers
Languages : en
Pages : 333
Book Description
Cloud computing has proven to be a successful paradigm of service-oriented computing, and has revolutionized the way computing infrastructures are abstracted and used. By means of cloud computing technology, massive data can be managed effectively and efficiently to support various aspects of problem solving and decision making. Managing Big Data in Cloud Computing Environments explores the latest advancements in the area of data management and analysis in the cloud. Providing timely, research-based information relating to data storage, sharing, extraction, and indexing in cloud systems, this publication is an ideal reference source for graduate students, IT specialists, researchers, and professionals working in the areas of data and knowledge engineering.
Publisher: IGI Global
ISBN: 1466698357
Category : Computers
Languages : en
Pages : 333
Book Description
Cloud computing has proven to be a successful paradigm of service-oriented computing, and has revolutionized the way computing infrastructures are abstracted and used. By means of cloud computing technology, massive data can be managed effectively and efficiently to support various aspects of problem solving and decision making. Managing Big Data in Cloud Computing Environments explores the latest advancements in the area of data management and analysis in the cloud. Providing timely, research-based information relating to data storage, sharing, extraction, and indexing in cloud systems, this publication is an ideal reference source for graduate students, IT specialists, researchers, and professionals working in the areas of data and knowledge engineering.
Web-Age Information Management
Author: Xiaokui Xiao
Publisher: Springer
ISBN: 3319235311
Category : Computers
Languages : en
Pages : 120
Book Description
This book constitutes the refereed proceedings of 2 workshops of the 16th International Conference on Web-Age Information Management, WAIM 2015, held in Qingdao, China, June 8-10, 2015. The 9 revised full papers are organized in topical sections on the two following workshops: International Workshop on Heterogeneous Information Network Analysis and Applications (HENA 2015), and Second International Workshop on Human Aspects of Making Recommendations in and for Social Ubiquitous Networking Environments (HRSUNE 2015).
Publisher: Springer
ISBN: 3319235311
Category : Computers
Languages : en
Pages : 120
Book Description
This book constitutes the refereed proceedings of 2 workshops of the 16th International Conference on Web-Age Information Management, WAIM 2015, held in Qingdao, China, June 8-10, 2015. The 9 revised full papers are organized in topical sections on the two following workshops: International Workshop on Heterogeneous Information Network Analysis and Applications (HENA 2015), and Second International Workshop on Human Aspects of Making Recommendations in and for Social Ubiquitous Networking Environments (HRSUNE 2015).
Cloud-Based RDF Data Management
Author: Zoi Kaoudi
Publisher: Morgan & Claypool Publishers
ISBN: 1681730340
Category : Computers
Languages : en
Pages : 105
Book Description
Resource Description Framework (or RDF, in short) is set to deliver many of the original semi-structured data promises: flexible structure, optional schema, and rich, flexible Universal Resource Identifiers as a basis for information sharing. Moreover, RDF is uniquely positioned to benefit from the efforts of scientific communities studying databases, knowledge representation, and Web technologies. As a consequence, the RDF data model is used in a variety of applications today for integrating knowledge and information: in open Web or government data via the Linked Open Data initiative, in scientific domains such as bioinformatics, and more recently in search engines and personal assistants of enterprises in the form of knowledge graphs. Managing such large volumes of RDF data is challenging due to the sheer size, heterogeneity, and complexity brought by RDF reasoning. To tackle the size challenge, distributed architectures are required. Cloud computing is an emerging paradigm massively adopted in many applications requiring distributed architectures for the scalability, fault tolerance, and elasticity features it provides. At the same time, interest in massively parallel processing has been renewed by the MapReduce model and many follow-up works, which aim at simplifying the deployment of massively parallel data management tasks in a cloud environment. In this book, we study the state-of-the-art RDF data management in cloud environments and parallel/distributed architectures that were not necessarily intended for the cloud, but can easily be deployed therein. After providing a comprehensive background on RDF and cloud technologies, we explore four aspects that are vital in an RDF data management system: data storage, query processing, query optimization, and reasoning. We conclude the book with a discussion on open problems and future directions.
Publisher: Morgan & Claypool Publishers
ISBN: 1681730340
Category : Computers
Languages : en
Pages : 105
Book Description
Resource Description Framework (or RDF, in short) is set to deliver many of the original semi-structured data promises: flexible structure, optional schema, and rich, flexible Universal Resource Identifiers as a basis for information sharing. Moreover, RDF is uniquely positioned to benefit from the efforts of scientific communities studying databases, knowledge representation, and Web technologies. As a consequence, the RDF data model is used in a variety of applications today for integrating knowledge and information: in open Web or government data via the Linked Open Data initiative, in scientific domains such as bioinformatics, and more recently in search engines and personal assistants of enterprises in the form of knowledge graphs. Managing such large volumes of RDF data is challenging due to the sheer size, heterogeneity, and complexity brought by RDF reasoning. To tackle the size challenge, distributed architectures are required. Cloud computing is an emerging paradigm massively adopted in many applications requiring distributed architectures for the scalability, fault tolerance, and elasticity features it provides. At the same time, interest in massively parallel processing has been renewed by the MapReduce model and many follow-up works, which aim at simplifying the deployment of massively parallel data management tasks in a cloud environment. In this book, we study the state-of-the-art RDF data management in cloud environments and parallel/distributed architectures that were not necessarily intended for the cloud, but can easily be deployed therein. After providing a comprehensive background on RDF and cloud technologies, we explore four aspects that are vital in an RDF data management system: data storage, query processing, query optimization, and reasoning. We conclude the book with a discussion on open problems and future directions.
The Four Generations of Entity Resolution
Author: George Papadakis
Publisher: Springer Nature
ISBN: 3031018788
Category : Computers
Languages : en
Pages : 152
Book Description
Entity Resolution (ER) lies at the core of data integration and cleaning and, thus, a bulk of the research examines ways for improving its effectiveness and time efficiency. The initial ER methods primarily target Veracity in the context of structured (relational) data that are described by a schema of well-known quality and meaning. To achieve high effectiveness, they leverage schema, expert, and/or external knowledge. Part of these methods are extended to address Volume, processing large datasets through multi-core or massive parallelization approaches, such as the MapReduce paradigm. However, these early schema-based approaches are inapplicable to Web Data, which abound in voluminous, noisy, semi-structured, and highly heterogeneous information. To address the additional challenge of Variety, recent works on ER adopt a novel, loosely schema-aware functionality that emphasizes scalability and robustness to noise. Another line of present research focuses on the additional challenge of Velocity, aiming to process data collections of a continuously increasing volume. The latest works, though, take advantage of the significant breakthroughs in Deep Learning and Crowdsourcing, incorporating external knowledge to enhance the existing words to a significant extent. This synthesis lecture organizes ER methods into four generations based on the challenges posed by these four Vs. For each generation, we outline the corresponding ER workflow, discuss the state-of-the-art methods per workflow step, and present current research directions. The discussion of these methods takes into account a historical perspective, explaining the evolution of the methods over time along with their similarities and differences. The lecture also discusses the available ER tools and benchmark datasets that allow expert as well as novice users to make use of the available solutions.
Publisher: Springer Nature
ISBN: 3031018788
Category : Computers
Languages : en
Pages : 152
Book Description
Entity Resolution (ER) lies at the core of data integration and cleaning and, thus, a bulk of the research examines ways for improving its effectiveness and time efficiency. The initial ER methods primarily target Veracity in the context of structured (relational) data that are described by a schema of well-known quality and meaning. To achieve high effectiveness, they leverage schema, expert, and/or external knowledge. Part of these methods are extended to address Volume, processing large datasets through multi-core or massive parallelization approaches, such as the MapReduce paradigm. However, these early schema-based approaches are inapplicable to Web Data, which abound in voluminous, noisy, semi-structured, and highly heterogeneous information. To address the additional challenge of Variety, recent works on ER adopt a novel, loosely schema-aware functionality that emphasizes scalability and robustness to noise. Another line of present research focuses on the additional challenge of Velocity, aiming to process data collections of a continuously increasing volume. The latest works, though, take advantage of the significant breakthroughs in Deep Learning and Crowdsourcing, incorporating external knowledge to enhance the existing words to a significant extent. This synthesis lecture organizes ER methods into four generations based on the challenges posed by these four Vs. For each generation, we outline the corresponding ER workflow, discuss the state-of-the-art methods per workflow step, and present current research directions. The discussion of these methods takes into account a historical perspective, explaining the evolution of the methods over time along with their similarities and differences. The lecture also discusses the available ER tools and benchmark datasets that allow expert as well as novice users to make use of the available solutions.
Fault-Tolerant Distributed Transactions on Blockchain
Author: Suyash Gupta
Publisher: Springer Nature
ISBN: 303101877X
Category : Computers
Languages : en
Pages : 248
Book Description
Since the introduction of Bitcoin—the first widespread application driven by blockchain—the interest of the public and private sectors in blockchain has skyrocketed. In recent years, blockchain-based fabrics have been used to address challenges in diverse fields such as trade, food production, property rights, identity-management, aid delivery, health care, and fraud prevention. This widespread interest follows from fundamental concepts on which blockchains are built that together embed the notion of trust, upon which blockchains are built. 1. Blockchains provide data transparancy. Data in a blockchain is stored in the form of a ledger, which contains an ordered history of all the transactions. This facilitates oversight and auditing. 2. Blockchains ensure data integrity by using strong cryptographic primitives. This guarantees that transactions accepted by the blockchain are authenticated by its issuer, are immutable, and cannot be repudiated by the issuer. This ensures accountability. 3. Blockchains are decentralized, democratic, and resilient. They use consensus-based replication to decentralize the ledger among many independent participants. Thus, it can operate completely decentralized and does not require trust in a single authority. Additions to the chain are performed by consensus, in which all participants have a democratic voice in maintaining the integrity of the blockchain. Due to the usage of replication and consensus, blockchains are also highly resilient to malicious attacks even when a significant portion of the participants are malicious. It further increases the opportunity for fairness and equity through democratization. These fundamental concepts and the technologies behind them—a generic ledger-based data model, cryptographically ensured data integrity, and consensus-based replication—prove to be a powerful and inspiring combination, a catalyst to promote computational trust. In this book, we present an in-depth study of blockchain, unraveling its revolutionary promise to instill computational trust in society, all carefully tailored to a broad audience including students, researchers, and practitioners. We offer a comprehensive overview of theoretical limitations and practical usability of consensus protocols while examining the diverse landscape of how blockchains are manifested in their permissioned and permissionless forms.
Publisher: Springer Nature
ISBN: 303101877X
Category : Computers
Languages : en
Pages : 248
Book Description
Since the introduction of Bitcoin—the first widespread application driven by blockchain—the interest of the public and private sectors in blockchain has skyrocketed. In recent years, blockchain-based fabrics have been used to address challenges in diverse fields such as trade, food production, property rights, identity-management, aid delivery, health care, and fraud prevention. This widespread interest follows from fundamental concepts on which blockchains are built that together embed the notion of trust, upon which blockchains are built. 1. Blockchains provide data transparancy. Data in a blockchain is stored in the form of a ledger, which contains an ordered history of all the transactions. This facilitates oversight and auditing. 2. Blockchains ensure data integrity by using strong cryptographic primitives. This guarantees that transactions accepted by the blockchain are authenticated by its issuer, are immutable, and cannot be repudiated by the issuer. This ensures accountability. 3. Blockchains are decentralized, democratic, and resilient. They use consensus-based replication to decentralize the ledger among many independent participants. Thus, it can operate completely decentralized and does not require trust in a single authority. Additions to the chain are performed by consensus, in which all participants have a democratic voice in maintaining the integrity of the blockchain. Due to the usage of replication and consensus, blockchains are also highly resilient to malicious attacks even when a significant portion of the participants are malicious. It further increases the opportunity for fairness and equity through democratization. These fundamental concepts and the technologies behind them—a generic ledger-based data model, cryptographically ensured data integrity, and consensus-based replication—prove to be a powerful and inspiring combination, a catalyst to promote computational trust. In this book, we present an in-depth study of blockchain, unraveling its revolutionary promise to instill computational trust in society, all carefully tailored to a broad audience including students, researchers, and practitioners. We offer a comprehensive overview of theoretical limitations and practical usability of consensus protocols while examining the diverse landscape of how blockchains are manifested in their permissioned and permissionless forms.
Big Data: Concepts, Methodologies, Tools, and Applications
Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1466698411
Category : Computers
Languages : en
Pages : 2523
Book Description
The digital age has presented an exponential growth in the amount of data available to individuals looking to draw conclusions based on given or collected information across industries. Challenges associated with the analysis, security, sharing, storage, and visualization of large and complex data sets continue to plague data scientists and analysts alike as traditional data processing applications struggle to adequately manage big data. Big Data: Concepts, Methodologies, Tools, and Applications is a multi-volume compendium of research-based perspectives and solutions within the realm of large-scale and complex data sets. Taking a multidisciplinary approach, this publication presents exhaustive coverage of crucial topics in the field of big data including diverse applications, storage solutions, analysis techniques, and methods for searching and transferring large data sets, in addition to security issues. Emphasizing essential research in the field of data science, this publication is an ideal reference source for data analysts, IT professionals, researchers, and academics.
Publisher: IGI Global
ISBN: 1466698411
Category : Computers
Languages : en
Pages : 2523
Book Description
The digital age has presented an exponential growth in the amount of data available to individuals looking to draw conclusions based on given or collected information across industries. Challenges associated with the analysis, security, sharing, storage, and visualization of large and complex data sets continue to plague data scientists and analysts alike as traditional data processing applications struggle to adequately manage big data. Big Data: Concepts, Methodologies, Tools, and Applications is a multi-volume compendium of research-based perspectives and solutions within the realm of large-scale and complex data sets. Taking a multidisciplinary approach, this publication presents exhaustive coverage of crucial topics in the field of big data including diverse applications, storage solutions, analysis techniques, and methods for searching and transferring large data sets, in addition to security issues. Emphasizing essential research in the field of data science, this publication is an ideal reference source for data analysts, IT professionals, researchers, and academics.
The Semantic Web – ISWC 2021
Author: Andreas Hotho
Publisher: Springer Nature
ISBN: 3030883612
Category : Computers
Languages : en
Pages : 756
Book Description
This book constitutes the proceedings of the 20th International Semantic Web Conference, ISWC 2021, which took place in October 2021. Due to COVID-19 pandemic the conference was held virtually. The papers included in this volume deal with the latest advances in fundamental research, innovative technology, and applications of the Semantic Web, linked data, knowledge graphs, and knowledge processing on the Web. Papers are organized in a research track, resources and in-use track. The research track details theoretical, analytical and empirical aspects of the Semantic Web and its intersection with other disciplines. The resources track promotes the sharing of resources which support, enable or utilize semantic web research, including datasets, ontologies, software, and benchmarks. And finally, the in-use-track is dedicated to novel and significant research contributions addressing theoretical, analytical and empirical aspects of the Semantic Web and its intersection with other disciplines.
Publisher: Springer Nature
ISBN: 3030883612
Category : Computers
Languages : en
Pages : 756
Book Description
This book constitutes the proceedings of the 20th International Semantic Web Conference, ISWC 2021, which took place in October 2021. Due to COVID-19 pandemic the conference was held virtually. The papers included in this volume deal with the latest advances in fundamental research, innovative technology, and applications of the Semantic Web, linked data, knowledge graphs, and knowledge processing on the Web. Papers are organized in a research track, resources and in-use track. The research track details theoretical, analytical and empirical aspects of the Semantic Web and its intersection with other disciplines. The resources track promotes the sharing of resources which support, enable or utilize semantic web research, including datasets, ontologies, software, and benchmarks. And finally, the in-use-track is dedicated to novel and significant research contributions addressing theoretical, analytical and empirical aspects of the Semantic Web and its intersection with other disciplines.