Clifford Algebras and Spinors

Clifford Algebras and Spinors PDF Author: Pertti Lounesto
Publisher: Cambridge University Press
ISBN: 0521005515
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
This is the second edition of a popular work offering a unique introduction to Clifford algebras and spinors. The beginning chapters could be read by undergraduates; vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters will also interest physicists, and include treatments of the quantum mechanics of the electron, electromagnetism and special relativity with a flavour of Clifford algebras. This edition has three new chapters, including material on conformal invariance and a history of Clifford algebras.

Clifford Algebras and Spinors

Clifford Algebras and Spinors PDF Author: Pertti Lounesto
Publisher: Cambridge University Press
ISBN: 0521005515
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
This is the second edition of a popular work offering a unique introduction to Clifford algebras and spinors. The beginning chapters could be read by undergraduates; vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters will also interest physicists, and include treatments of the quantum mechanics of the electron, electromagnetism and special relativity with a flavour of Clifford algebras. This edition has three new chapters, including material on conformal invariance and a history of Clifford algebras.

The Algebraic Theory of Spinors and Clifford Algebras

The Algebraic Theory of Spinors and Clifford Algebras PDF Author: Claude Chevalley
Publisher: Springer Science & Business Media
ISBN: 9783540570639
Category : Mathematics
Languages : en
Pages : 232

Get Book Here

Book Description
In 1982, Claude Chevalley expressed three specific wishes with respect to the publication of his Works. First, he stated very clearly that such a publication should include his non technical papers. His reasons for that were two-fold. One reason was his life long commitment to epistemology and to politics, which made him strongly opposed to the view otherwise currently held that mathematics involves only half of a man. As he wrote to G. C. Rota on November 29th, 1982: "An important number of papers published by me are not of a mathematical nature. Some have epistemological features which might explain their presence in an edition of collected papers of a mathematician, but quite a number of them are concerned with theoretical politics ( . . . ) they reflect an aspect of myself the omission of which would, I think, give a wrong idea of my lines of thinking". On the other hand, Chevalley thought that the Collected Works of a mathematician ought to be read not only by other mathematicians, but also by historians of science.

An Introduction to Clifford Algebras and Spinors

An Introduction to Clifford Algebras and Spinors PDF Author: Jayme Vaz Jr.
Publisher: Oxford University Press
ISBN: 0198782926
Category : Mathematics
Languages : en
Pages : 257

Get Book Here

Book Description
This work is unique compared to the existing literature. It is very didactical and accessible to both students and researchers, without neglecting the formal character and the deep algebraic completeness of the topic along with its physical applications.

Clifford Numbers and Spinors

Clifford Numbers and Spinors PDF Author: Marcel Riesz
Publisher: Springer Science & Business Media
ISBN: 9401710473
Category : Science
Languages : en
Pages : 252

Get Book Here

Book Description
Marcellliesz's lectures delivered on October 1957 -January 1958 at the Uni versity of Maryland, College Park, have been previously published only infor mally as a manuscript entitled CLIFFORD NUMBERS AND SPINORS (Chap ters I - IV). As the title says, the lecture notes consist of four Chapters I, II, III and IV. However, in the preface of the lecture notes lliesz refers to Chapters V and VI which he could not finish. Chapter VI is mentioned on pages 1, 3, 16, 38 and 156, which makes it plausible that lliesz was well aware of what he was going to include in the final missing chapters. The present book makes lliesz's classic lecture notes generally available to a wider audience and tries somewhat to fill in one of the last missing chapters. This book also tries to evaluate lliesz's influence on the present research on Clifford algebras and draws special attention to lliesz's contributions in this field - often misunderstood.

Clifford Algebras and Their Applications in Mathematical Physics

Clifford Algebras and Their Applications in Mathematical Physics PDF Author: J.S.R. Chisholm
Publisher: Springer Science & Business Media
ISBN: 9400947283
Category : Mathematics
Languages : en
Pages : 589

Get Book Here

Book Description
William Kingdon Clifford published the paper defining his "geometric algebras" in 1878, the year before his death. Clifford algebra is a generalisation to n-dimensional space of quaternions, which Hamilton used to represent scalars and vectors in real three-space: it is also a development of Grassmann's algebra, incorporating in the fundamental relations inner products defined in terms of the metric of the space. It is a strange fact that the Gibbs Heaviside vector techniques came to dominate in scientific and technical literature, while quaternions and Clifford algebras, the true associative algebras of inner-product spaces, were regarded for nearly a century simply as interesting mathematical curiosities. During this period, Pauli, Dirac and Majorana used the algebras which bear their names to describe properties of elementary particles, their spin in particular. It seems likely that none of these eminent mathematical physicists realised that they were using Clifford algebras. A few research workers such as Fueter realised the power of this algebraic scheme, but the subject only began to be appreciated more widely after the publication of Chevalley's book, 'The Algebraic Theory of Spinors' in 1954, and of Marcel Riesz' Maryland Lectures in 1959. Some of the contributors to this volume, Georges Deschamps, Erik Folke Bolinder, Albert Crumeyrolle and David Hestenes were working in this field around that time, and in their turn have persuaded others of the importance of the subject.

Clifford Algebra to Geometric Calculus

Clifford Algebra to Geometric Calculus PDF Author: David Hestenes
Publisher: Springer Science & Business Media
ISBN: 9789027725615
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.

Clifford Algebras

Clifford Algebras PDF Author: Rafal Ablamowicz
Publisher: Springer Science & Business Media
ISBN: 1461220440
Category : Mathematics
Languages : en
Pages : 635

Get Book Here

Book Description
The invited papers in this volume provide a detailed examination of Clifford algebras and their significance to analysis, geometry, mathematical structures, physics, and applications in engineering. While the papers collected in this volume require that the reader possess a solid knowledge of appropriate background material, they lead to the most current research topics. With its wide range of topics, well-established contributors, and excellent references and index, this book will appeal to graduate students and researchers.

Clifford Algebras and Lie Theory

Clifford Algebras and Lie Theory PDF Author: Eckhard Meinrenken
Publisher: Springer Science & Business Media
ISBN: 3642362168
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan’s famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci’s proof of the Poincaré–Birkhoff–Witt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo’s theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant’s structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his “Clifford algebra analogue” of the Hopf–Koszul–Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics.

The Theory of Spinors

The Theory of Spinors PDF Author: Élie Cartan
Publisher: Courier Corporation
ISBN: 0486137325
Category : Mathematics
Languages : en
Pages : 193

Get Book Here

Book Description
Describes orthgonal and related Lie groups, using real or complex parameters and indefinite metrics. Develops theory of spinors by giving a purely geometric definition of these mathematical entities.

Clifford Algebras and Spinor Structures

Clifford Algebras and Spinor Structures PDF Author: Rafal Ablamowicz
Publisher: Springer Science & Business Media
ISBN: 9401584222
Category : Mathematics
Languages : en
Pages : 428

Get Book Here

Book Description
This volume is dedicated to the memory of Albert Crumeyrolle, who died on June 17, 1992. In organizing the volume we gave priority to: articles summarizing Crumeyrolle's own work in differential geometry, general relativity and spinors, articles which give the reader an idea of the depth and breadth of Crumeyrolle's research interests and influence in the field, articles of high scientific quality which would be of general interest. In each of the areas to which Crumeyrolle made significant contribution - Clifford and exterior algebras, Weyl and pure spinors, spin structures on manifolds, principle of triality, conformal geometry - there has been substantial progress. Our hope is that the volume conveys the originality of Crumeyrolle's own work, the continuing vitality of the field he influenced, and the enduring respect for, and tribute to, him and his accomplishments in the mathematical community. It isour pleasure to thank Peter Morgan, Artibano Micali, Joseph Grifone, Marie Crumeyrolle and Kluwer Academic Publishers for their help in preparingthis volume.