Clean Code in Python

Clean Code in Python PDF Author: Mariano Anaya
Publisher: Packt Publishing Ltd
ISBN: 1788837061
Category : Computers
Languages : en
Pages : 328

Get Book Here

Book Description
Getting the most out of Python to improve your codebase Key Features Save maintenance costs by learning to fix your legacy codebase Learn the principles and techniques of refactoring Apply microservices to your legacy systems by implementing practical techniques Book Description Python is currently used in many different areas such as software construction, systems administration, and data processing. In all of these areas, experienced professionals can find examples of inefficiency, problems, and other perils, as a result of bad code. After reading this book, readers will understand these problems, and more importantly, how to correct them. The book begins by describing the basic elements of writing clean code and how it plays an important role in Python programming. You will learn about writing efficient and readable code using the Python standard library and best practices for software design. You will learn to implement the SOLID principles in Python and use decorators to improve your code. The book delves more deeply into object oriented programming in Python and shows you how to use objects with descriptors and generators. It will also show you the design principles of software testing and how to resolve software problems by implementing design patterns in your code. In the final chapter we break down a monolithic application to a microservice one, starting from the code as the basis for a solid platform. By the end of the book, you will be proficient in applying industry approved coding practices to design clean, sustainable and readable Python code. What you will learn Set up tools to effectively work in a development environment Explore how the magic methods of Python can help us write better code Examine the traits of Python to create advanced object-oriented design Understand removal of duplicated code using decorators and descriptors Effectively refactor code with the help of unit tests Learn to implement the SOLID principles in Python Who this book is for This book will appeal to team leads, software architects and senior software engineers who would like to work on their legacy systems to save cost and improve efficiency. A strong understanding of Programming is assumed.

Clean Code in Python

Clean Code in Python PDF Author: Mariano Anaya
Publisher: Packt Publishing Ltd
ISBN: 1788837061
Category : Computers
Languages : en
Pages : 328

Get Book Here

Book Description
Getting the most out of Python to improve your codebase Key Features Save maintenance costs by learning to fix your legacy codebase Learn the principles and techniques of refactoring Apply microservices to your legacy systems by implementing practical techniques Book Description Python is currently used in many different areas such as software construction, systems administration, and data processing. In all of these areas, experienced professionals can find examples of inefficiency, problems, and other perils, as a result of bad code. After reading this book, readers will understand these problems, and more importantly, how to correct them. The book begins by describing the basic elements of writing clean code and how it plays an important role in Python programming. You will learn about writing efficient and readable code using the Python standard library and best practices for software design. You will learn to implement the SOLID principles in Python and use decorators to improve your code. The book delves more deeply into object oriented programming in Python and shows you how to use objects with descriptors and generators. It will also show you the design principles of software testing and how to resolve software problems by implementing design patterns in your code. In the final chapter we break down a monolithic application to a microservice one, starting from the code as the basis for a solid platform. By the end of the book, you will be proficient in applying industry approved coding practices to design clean, sustainable and readable Python code. What you will learn Set up tools to effectively work in a development environment Explore how the magic methods of Python can help us write better code Examine the traits of Python to create advanced object-oriented design Understand removal of duplicated code using decorators and descriptors Effectively refactor code with the help of unit tests Learn to implement the SOLID principles in Python Who this book is for This book will appeal to team leads, software architects and senior software engineers who would like to work on their legacy systems to save cost and improve efficiency. A strong understanding of Programming is assumed.

Clean Python

Clean Python PDF Author: Sunil Kapil
Publisher: Apress
ISBN: 1484248783
Category : Computers
Languages : en
Pages : 274

Get Book Here

Book Description
Discover the right way to code in Python. This book provides the tips and techniques you need to produce cleaner, error-free, and eloquent Python projects. Your journey to better code starts with understanding the importance of formatting and documenting your code for maximum readability, utilizing built-in data structures and Python dictionary for improved maintainability, and working with modules and meta-classes to effectively organize your code. You will then dive deep into the new features of the Python language and learn how to effectively utilize them. Next, you will decode key concepts such as asynchronous programming, Python data types, type hinting, and path handling. Learn tips to debug and conduct unit and integration tests in your Python code to ensure your code is ready for production. The final leg of your learning journey equips you with essential tools for version management, managing live code, and intelligent code completion. After reading and using this book, you will be proficient in writing clean Python code and successfully apply these principles to your own Python projects. What You’ll Learn Use the right expressions and statements in your Python code Create and assess Python Dictionary Work with advanced data structures in Python Write better modules, classes, functions, and metaclassesStart writing asynchronous Python immediatelyDiscover new features in Python Who This Book Is For Readers with a basic Python programming knowledge who want to improve their Python programming skills by learning right way to code in Python.

Clean Code in Python

Clean Code in Python PDF Author: Mariano Anaya
Publisher: Packt Publishing Ltd
ISBN: 1800562098
Category : Computers
Languages : en
Pages : 423

Get Book Here

Book Description
Tackle inefficiencies and errors the Pythonic way Key Features Enhance your coding skills using the new features introduced in Python 3.9 Implement the refactoring techniques and SOLID principles in Python Apply microservices to your legacy systems by implementing practical techniques Book Description Experienced professionals in every field face several instances of disorganization, poor readability, and testability due to unstructured code. With updated code and revised content aligned to the new features of Python 3.9, this second edition of Clean Code in Python will provide you with all the tools you need to overcome these obstacles and manage your projects successfully. The book begins by describing the basic elements of writing clean code and how it plays a key role in Python programming. You will learn about writing efficient and readable code using the Python standard library and best practices for software design. The book discusses object-oriented programming in Python and shows you how to use objects with descriptors and generators. It will also show you the design principles of software testing and how to resolve problems by implementing software design patterns in your code. In the concluding chapter, we break down a monolithic application into a microservices-based one starting from the code as the basis for a solid platform. By the end of this clean code book, you will be proficient in applying industry-approved coding practices to design clean, sustainable, and readable real-world Python code. What you will learn Set up a productive development environment by leveraging automatic tools Leverage the magic methods in Python to write better code, abstracting complexity away and encapsulating details Create advanced object-oriented designs using unique features of Python, such as descriptors Eliminate duplicated code by creating powerful abstractions using software engineering principles of object-oriented design Create Python-specific solutions using decorators and descriptors Refactor code effectively with the help of unit tests Build the foundations for solid architecture with a clean code base as its cornerstone Who this book is for This book is designed to benefit new as well as experienced programmers. It will appeal to team leads, software architects and senior software engineers who would like to write Pythonic code to save on costs and improve efficiency. The book assumes that you have a strong understanding of programming

Robust Python

Robust Python PDF Author: Patrick Viafore
Publisher: "O'Reilly Media, Inc."
ISBN: 1098100611
Category : Computers
Languages : en
Pages : 365

Get Book Here

Book Description
Does it seem like your Python projects are getting bigger and bigger? Are you feeling the pain as your codebase expands and gets tougher to debug and maintain? Python is an easy language to learn and use, but that also means systems can quickly grow beyond comprehension. Thankfully, Python has features to help developers overcome maintainability woes. In this practical book, author Patrick Viafore shows you how to use Python's type system to the max. You'll look at user-defined types, such as classes and enums, and Python's type hinting system. You'll also learn how to make Python extensible and how to use a comprehensive testing strategy as a safety net. With these tips and techniques, you'll write clearer and more maintainable code. Learn why types are essential in modern development ecosystems Understand how type choices such as classes, dictionaries, and enums reflect specific intents Make Python extensible for the future without adding bloat Use popular Python tools to increase the safety and robustness of your codebase Evaluate current code to detect common maintainability gotchas Build a safety net around your codebase with linters and tests

Beyond the Basic Stuff with Python

Beyond the Basic Stuff with Python PDF Author: Al Sweigart
Publisher: No Starch Press
ISBN: 1593279663
Category : Computers
Languages : en
Pages : 385

Get Book Here

Book Description
BRIDGE THE GAP BETWEEN NOVICE AND PROFESSIONAL You've completed a basic Python programming tutorial or finished Al Sweigart's bestseller, Automate the Boring Stuff with Python. What's the next step toward becoming a capable, confident software developer? Welcome to Beyond the Basic Stuff with Python. More than a mere collection of advanced syntax and masterful tips for writing clean code, you'll learn how to advance your Python programming skills by using the command line and other professional tools like code formatters, type checkers, linters, and version control. Sweigart takes you through best practices for setting up your development environment, naming variables, and improving readability, then tackles documentation, organization and performance measurement, as well as object-oriented design and the Big-O algorithm analysis commonly used in coding interviews. The skills you learn will boost your ability to program--not just in Python but in any language. You'll learn: Coding style, and how to use Python's Black auto-formatting tool for cleaner code Common sources of bugs, and how to detect them with static analyzers How to structure the files in your code projects with the Cookiecutter template tool Functional programming techniques like lambda and higher-order functions How to profile the speed of your code with Python's built-in timeit and cProfile modules The computer science behind Big-O algorithm analysis How to make your comments and docstrings informative, and how often to write them How to create classes in object-oriented programming, and why they're used to organize code Toward the end of the book you'll read a detailed source-code breakdown of two classic command-line games, the Tower of Hanoi (a logic puzzle) and Four-in-a-Row (a two-player tile-dropping game), and a breakdown of how their code follows the book's best practices. You'll test your skills by implementing the program yourself. Of course, no single book can make you a professional software developer. But Beyond the Basic Stuff with Python will get you further down that path and make you a better programmer, as you learn to write readable code that's easy to debug and perfectly Pythonic Requirements: Covers Python 3.6 and higher

Cleaning Data for Effective Data Science

Cleaning Data for Effective Data Science PDF Author: David Mertz
Publisher: Packt Publishing Ltd
ISBN: 1801074402
Category : Mathematics
Languages : en
Pages : 499

Get Book Here

Book Description
Think about your data intelligently and ask the right questions Key FeaturesMaster data cleaning techniques necessary to perform real-world data science and machine learning tasksSpot common problems with dirty data and develop flexible solutions from first principlesTest and refine your newly acquired skills through detailed exercises at the end of each chapterBook Description Data cleaning is the all-important first step to successful data science, data analysis, and machine learning. If you work with any kind of data, this book is your go-to resource, arming you with the insights and heuristics experienced data scientists had to learn the hard way. In a light-hearted and engaging exploration of different tools, techniques, and datasets real and fictitious, Python veteran David Mertz teaches you the ins and outs of data preparation and the essential questions you should be asking of every piece of data you work with. Using a mixture of Python, R, and common command-line tools, Cleaning Data for Effective Data Science follows the data cleaning pipeline from start to end, focusing on helping you understand the principles underlying each step of the process. You'll look at data ingestion of a vast range of tabular, hierarchical, and other data formats, impute missing values, detect unreliable data and statistical anomalies, and generate synthetic features. The long-form exercises at the end of each chapter let you get hands-on with the skills you've acquired along the way, also providing a valuable resource for academic courses. What you will learnIngest and work with common data formats like JSON, CSV, SQL and NoSQL databases, PDF, and binary serialized data structuresUnderstand how and why we use tools such as pandas, SciPy, scikit-learn, Tidyverse, and BashApply useful rules and heuristics for assessing data quality and detecting bias, like Benford’s law and the 68-95-99.7 ruleIdentify and handle unreliable data and outliers, examining z-score and other statistical propertiesImpute sensible values into missing data and use sampling to fix imbalancesUse dimensionality reduction, quantization, one-hot encoding, and other feature engineering techniques to draw out patterns in your dataWork carefully with time series data, performing de-trending and interpolationWho this book is for This book is designed to benefit software developers, data scientists, aspiring data scientists, teachers, and students who work with data. If you want to improve your rigor in data hygiene or are looking for a refresher, this book is for you. Basic familiarity with statistics, general concepts in machine learning, knowledge of a programming language (Python or R), and some exposure to data science are helpful.

Data Visualization with Python and JavaScript

Data Visualization with Python and JavaScript PDF Author: Kyran Dale
Publisher: "O'Reilly Media, Inc."
ISBN: 1491920548
Category : Computers
Languages : en
Pages : 581

Get Book Here

Book Description
Learn how to turn raw data into rich, interactive web visualizations with the powerful combination of Python and JavaScript. With this hands-on guide, author Kyran Dale teaches you how build a basic dataviz toolchain with best-of-breed Python and JavaScript libraries—including Scrapy, Matplotlib, Pandas, Flask, and D3—for crafting engaging, browser-based visualizations. As a working example, throughout the book Dale walks you through transforming Wikipedia’s table-based list of Nobel Prize winners into an interactive visualization. You’ll examine steps along the entire toolchain, from scraping, cleaning, exploring, and delivering data to building the visualization with JavaScript’s D3 library. If you’re ready to create your own web-based data visualizations—and know either Python or JavaScript— this is the book for you. Learn how to manipulate data with Python Understand the commonalities between Python and JavaScript Extract information from websites by using Python’s web-scraping tools, BeautifulSoup and Scrapy Clean and explore data with Python’s Pandas, Matplotlib, and Numpy libraries Serve data and create RESTful web APIs with Python’s Flask framework Create engaging, interactive web visualizations with JavaScript’s D3 library

Python Data Cleaning Cookbook

Python Data Cleaning Cookbook PDF Author: Michael Walker
Publisher: Packt Publishing Ltd
ISBN: 1800564597
Category : Computers
Languages : en
Pages : 437

Get Book Here

Book Description
Discover how to describe your data in detail, identify data issues, and find out how to solve them using commonly used techniques and tips and tricks Key FeaturesGet well-versed with various data cleaning techniques to reveal key insightsManipulate data of different complexities to shape them into the right form as per your business needsClean, monitor, and validate large data volumes to diagnose problems before moving on to data analysisBook Description Getting clean data to reveal insights is essential, as directly jumping into data analysis without proper data cleaning may lead to incorrect results. This book shows you tools and techniques that you can apply to clean and handle data with Python. You'll begin by getting familiar with the shape of data by using practices that can be deployed routinely with most data sources. Then, the book teaches you how to manipulate data to get it into a useful form. You'll also learn how to filter and summarize data to gain insights and better understand what makes sense and what does not, along with discovering how to operate on data to address the issues you've identified. Moving on, you'll perform key tasks, such as handling missing values, validating errors, removing duplicate data, monitoring high volumes of data, and handling outliers and invalid dates. Next, you'll cover recipes on using supervised learning and Naive Bayes analysis to identify unexpected values and classification errors, and generate visualizations for exploratory data analysis (EDA) to visualize unexpected values. Finally, you'll build functions and classes that you can reuse without modification when you have new data. By the end of this Python book, you'll be equipped with all the key skills that you need to clean data and diagnose problems within it. What you will learnFind out how to read and analyze data from a variety of sourcesProduce summaries of the attributes of data frames, columns, and rowsFilter data and select columns of interest that satisfy given criteriaAddress messy data issues, including working with dates and missing valuesImprove your productivity in Python pandas by using method chainingUse visualizations to gain additional insights and identify potential data issuesEnhance your ability to learn what is going on in your dataBuild user-defined functions and classes to automate data cleaningWho this book is for This book is for anyone looking for ways to handle messy, duplicate, and poor data using different Python tools and techniques. The book takes a recipe-based approach to help you to learn how to clean and manage data. Working knowledge of Python programming is all you need to get the most out of the book.

Clean Code

Clean Code PDF Author: Robert C. Martin
Publisher: Pearson Education
ISBN: 0132350882
Category : Computers
Languages : en
Pages : 464

Get Book Here

Book Description
This title shows the process of cleaning code. Rather than just illustrating the end result, or just the starting and ending state, the author shows how several dozen seemingly small code changes can positively impact the performance and maintainability of an application code base.

Clean Architecture

Clean Architecture PDF Author: Robert C. Martin
Publisher: Prentice Hall
ISBN: 0134494326
Category : Computers
Languages : en
Pages : 652

Get Book Here

Book Description
Practical Software Architecture Solutions from the Legendary Robert C. Martin (“Uncle Bob”) By applying universal rules of software architecture, you can dramatically improve developer productivity throughout the life of any software system. Now, building upon the success of his best-selling books Clean Code and The Clean Coder, legendary software craftsman Robert C. Martin (“Uncle Bob”) reveals those rules and helps you apply them. Martin’s Clean Architecture doesn’t merely present options. Drawing on over a half-century of experience in software environments of every imaginable type, Martin tells you what choices to make and why they are critical to your success. As you’ve come to expect from Uncle Bob, this book is packed with direct, no-nonsense solutions for the real challenges you’ll face–the ones that will make or break your projects. Learn what software architects need to achieve–and core disciplines and practices for achieving it Master essential software design principles for addressing function, component separation, and data management See how programming paradigms impose discipline by restricting what developers can do Understand what’s critically important and what’s merely a “detail” Implement optimal, high-level structures for web, database, thick-client, console, and embedded applications Define appropriate boundaries and layers, and organize components and services See why designs and architectures go wrong, and how to prevent (or fix) these failures Clean Architecture is essential reading for every current or aspiring software architect, systems analyst, system designer, and software manager–and for every programmer who must execute someone else’s designs. Register your product for convenient access to downloads, updates, and/or corrections as they become available.