Author: Jarosław Konieczny
Publisher: Infinite Study
ISBN:
Category : Computers
Languages : en
Pages : 19
Book Description
Hydraulic power systems are commonly used in heavy industry (usually highly energy intensive and are often associated with high power losses. Designing a suitable system to allow an early assessment of the wear conditions of components in a hydraulic system (e.g., an axial piston pump) can effectively contribute to reducing energy losses during use. This paper presents the application of a deep machine learning system to determine the efficiency state of a multi-piston positive displacement pump. Such pumps are significant in high-power hydraulic systems. The correct operation of the entire hydraulic system often depends on its proper functioning. The wear and tear of individual pump components usually leads to a decrease in the pump’s operating pressure and volumetric losses, subsequently resulting in a decrease in overall pump efficiency and increases in vibration and pump noise. This in turn leads to an increase in energy losses throughout the hydraulic system, which releases excess heat. Typical failures of the discussed pumps and their causes are described after reviewing current research work using deep machine learning. Next, the test bench on which the diagnostic experiment was conducted and the selected operating signals that were recorded are described. The measured signals were subjected to a time–frequency analysis, and their features, calculated in terms of the time and frequency domains, underwent a significance ranking using the minimum redundancy maximum relevance (MRMR) algorithm. The next step was to design a neural network structure to classify the wear state of the pump and to test and evaluate the effectiveness of the network’s recognition of the pump’s condition. The whole study was summarized with conclusions.
Classification of Wear State for a Positive Displacement Pump Using Deep Machine Learning
Author: Jarosław Konieczny
Publisher: Infinite Study
ISBN:
Category : Computers
Languages : en
Pages : 19
Book Description
Hydraulic power systems are commonly used in heavy industry (usually highly energy intensive and are often associated with high power losses. Designing a suitable system to allow an early assessment of the wear conditions of components in a hydraulic system (e.g., an axial piston pump) can effectively contribute to reducing energy losses during use. This paper presents the application of a deep machine learning system to determine the efficiency state of a multi-piston positive displacement pump. Such pumps are significant in high-power hydraulic systems. The correct operation of the entire hydraulic system often depends on its proper functioning. The wear and tear of individual pump components usually leads to a decrease in the pump’s operating pressure and volumetric losses, subsequently resulting in a decrease in overall pump efficiency and increases in vibration and pump noise. This in turn leads to an increase in energy losses throughout the hydraulic system, which releases excess heat. Typical failures of the discussed pumps and their causes are described after reviewing current research work using deep machine learning. Next, the test bench on which the diagnostic experiment was conducted and the selected operating signals that were recorded are described. The measured signals were subjected to a time–frequency analysis, and their features, calculated in terms of the time and frequency domains, underwent a significance ranking using the minimum redundancy maximum relevance (MRMR) algorithm. The next step was to design a neural network structure to classify the wear state of the pump and to test and evaluate the effectiveness of the network’s recognition of the pump’s condition. The whole study was summarized with conclusions.
Publisher: Infinite Study
ISBN:
Category : Computers
Languages : en
Pages : 19
Book Description
Hydraulic power systems are commonly used in heavy industry (usually highly energy intensive and are often associated with high power losses. Designing a suitable system to allow an early assessment of the wear conditions of components in a hydraulic system (e.g., an axial piston pump) can effectively contribute to reducing energy losses during use. This paper presents the application of a deep machine learning system to determine the efficiency state of a multi-piston positive displacement pump. Such pumps are significant in high-power hydraulic systems. The correct operation of the entire hydraulic system often depends on its proper functioning. The wear and tear of individual pump components usually leads to a decrease in the pump’s operating pressure and volumetric losses, subsequently resulting in a decrease in overall pump efficiency and increases in vibration and pump noise. This in turn leads to an increase in energy losses throughout the hydraulic system, which releases excess heat. Typical failures of the discussed pumps and their causes are described after reviewing current research work using deep machine learning. Next, the test bench on which the diagnostic experiment was conducted and the selected operating signals that were recorded are described. The measured signals were subjected to a time–frequency analysis, and their features, calculated in terms of the time and frequency domains, underwent a significance ranking using the minimum redundancy maximum relevance (MRMR) algorithm. The next step was to design a neural network structure to classify the wear state of the pump and to test and evaluate the effectiveness of the network’s recognition of the pump’s condition. The whole study was summarized with conclusions.
Gravel Roads
Author: Ken Skorseth
Publisher:
ISBN:
Category : Gravel roads
Languages : en
Pages : 112
Book Description
The purpose of this manual is to provide clear and helpful information for maintaining gravel roads. Very little technical help is available to small agencies that are responsible for managing these roads. Gravel road maintenance has traditionally been "more of an art than a science" and very few formal standards exist. This manual contains guidelines to help answer the questions that arise concerning gravel road maintenance such as: What is enough surface crown? What is too much? What causes corrugation? The information is as nontechnical as possible without sacrificing clear guidelines and instructions on how to do the job right.
Publisher:
ISBN:
Category : Gravel roads
Languages : en
Pages : 112
Book Description
The purpose of this manual is to provide clear and helpful information for maintaining gravel roads. Very little technical help is available to small agencies that are responsible for managing these roads. Gravel road maintenance has traditionally been "more of an art than a science" and very few formal standards exist. This manual contains guidelines to help answer the questions that arise concerning gravel road maintenance such as: What is enough surface crown? What is too much? What causes corrugation? The information is as nontechnical as possible without sacrificing clear guidelines and instructions on how to do the job right.
Machine Learning, Neural and Statistical Classification
Author: Donald Michie
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 312
Book Description
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 312
Book Description
Machine Drawing
Author: K. L. Narayana
Publisher: New Age International
ISBN: 8122419178
Category : Machine design
Languages : en
Pages : 10
Book Description
About the Book: Written by three distinguished authors with ample academic and teaching experience, this textbook, meant for diploma and degree students of Mechanical Engineering as well as those preparing for AMIE examination, incorporates the latest st
Publisher: New Age International
ISBN: 8122419178
Category : Machine design
Languages : en
Pages : 10
Book Description
About the Book: Written by three distinguished authors with ample academic and teaching experience, this textbook, meant for diploma and degree students of Mechanical Engineering as well as those preparing for AMIE examination, incorporates the latest st
Machine Learning Algorithms for Industrial Applications
Author: Santosh Kumar Das
Publisher: Springer Nature
ISBN: 303050641X
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
This book explores several problems and their solutions regarding data analysis and prediction for industrial applications. Machine learning is a prominent topic in modern industries: its influence can be felt in many aspects of everyday life, as the world rapidly embraces big data and data analytics. Accordingly, there is a pressing need for novel and innovative algorithms to help us find effective solutions in industrial application areas such as media, healthcare, travel, finance, and retail. In all of these areas, data is the crucial parameter, and the main key to unlocking the value of industry. The book presents a range of intelligent algorithms that can be used to filter useful information in the above-mentioned application areas and efficiently solve particular problems. Its main objective is to raise awareness for this important field among students, researchers, and industrial practitioners.
Publisher: Springer Nature
ISBN: 303050641X
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
This book explores several problems and their solutions regarding data analysis and prediction for industrial applications. Machine learning is a prominent topic in modern industries: its influence can be felt in many aspects of everyday life, as the world rapidly embraces big data and data analytics. Accordingly, there is a pressing need for novel and innovative algorithms to help us find effective solutions in industrial application areas such as media, healthcare, travel, finance, and retail. In all of these areas, data is the crucial parameter, and the main key to unlocking the value of industry. The book presents a range of intelligent algorithms that can be used to filter useful information in the above-mentioned application areas and efficiently solve particular problems. Its main objective is to raise awareness for this important field among students, researchers, and industrial practitioners.
Handbook of Pumps and Pumping
Author: Brian Nesbitt
Publisher: Elsevier
ISBN: 0080549217
Category : Technology & Engineering
Languages : en
Pages : 499
Book Description
Written by an experienced engineer, this book contains practical information on all aspects of pumps including classifications, materials, seals, installation, commissioning and maintenance. In addition you will find essential information on units, manufacturers and suppliers worldwide, providing a unique reference for your desk, R&D lab, maintenance shop or library.* Includes maintenance techniques, helping you get the optimal performance out of your pump and reducing maintenance costs * Will help you to understand seals, couplings and ancillary equipment, ensuring systems are set up properly to save time and money * Provides useful contacts for manufacturers and suppliers who specialise in pumps, pumping and ancillary equipment
Publisher: Elsevier
ISBN: 0080549217
Category : Technology & Engineering
Languages : en
Pages : 499
Book Description
Written by an experienced engineer, this book contains practical information on all aspects of pumps including classifications, materials, seals, installation, commissioning and maintenance. In addition you will find essential information on units, manufacturers and suppliers worldwide, providing a unique reference for your desk, R&D lab, maintenance shop or library.* Includes maintenance techniques, helping you get the optimal performance out of your pump and reducing maintenance costs * Will help you to understand seals, couplings and ancillary equipment, ensuring systems are set up properly to save time and money * Provides useful contacts for manufacturers and suppliers who specialise in pumps, pumping and ancillary equipment
Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery
Author: Yaguo Lei
Publisher: Butterworth-Heinemann
ISBN: 0128115351
Category : Technology & Engineering
Languages : en
Pages : 378
Book Description
Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery provides a comprehensive introduction of intelligent fault diagnosis and RUL prediction based on the current achievements of the author's research group. The main contents include multi-domain signal processing and feature extraction, intelligent diagnosis models, clustering algorithms, hybrid intelligent diagnosis strategies, and RUL prediction approaches, etc. This book presents fundamental theories and advanced methods of identifying the occurrence, locations, and degrees of faults, and also includes information on how to predict the RUL of rotating machinery. Besides experimental demonstrations, many application cases are presented and illustrated to test the methods mentioned in the book. This valuable reference provides an essential guide on machinery fault diagnosis that helps readers understand basic concepts and fundamental theories. Academic researchers with mechanical engineering or computer science backgrounds, and engineers or practitioners who are in charge of machine safety, operation, and maintenance will find this book very useful. - Provides a detailed background and roadmap of intelligent diagnosis and RUL prediction of rotating machinery, involving fault mechanisms, vibration characteristics, health indicators, and diagnosis and prognostics - Presents basic theories, advanced methods, and the latest contributions in the field of intelligent fault diagnosis and RUL prediction - Includes numerous application cases, and the methods, algorithms, and models introduced in the book are demonstrated by industrial experiences
Publisher: Butterworth-Heinemann
ISBN: 0128115351
Category : Technology & Engineering
Languages : en
Pages : 378
Book Description
Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery provides a comprehensive introduction of intelligent fault diagnosis and RUL prediction based on the current achievements of the author's research group. The main contents include multi-domain signal processing and feature extraction, intelligent diagnosis models, clustering algorithms, hybrid intelligent diagnosis strategies, and RUL prediction approaches, etc. This book presents fundamental theories and advanced methods of identifying the occurrence, locations, and degrees of faults, and also includes information on how to predict the RUL of rotating machinery. Besides experimental demonstrations, many application cases are presented and illustrated to test the methods mentioned in the book. This valuable reference provides an essential guide on machinery fault diagnosis that helps readers understand basic concepts and fundamental theories. Academic researchers with mechanical engineering or computer science backgrounds, and engineers or practitioners who are in charge of machine safety, operation, and maintenance will find this book very useful. - Provides a detailed background and roadmap of intelligent diagnosis and RUL prediction of rotating machinery, involving fault mechanisms, vibration characteristics, health indicators, and diagnosis and prognostics - Presents basic theories, advanced methods, and the latest contributions in the field of intelligent fault diagnosis and RUL prediction - Includes numerous application cases, and the methods, algorithms, and models introduced in the book are demonstrated by industrial experiences
Applied Mechanics Reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 390
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 390
Book Description
Illinois 2021 Rules of the Road
Author: State of State of Illinois
Publisher:
ISBN:
Category :
Languages : en
Pages : 114
Book Description
Illinois 2021 Rules of the Road handbook, drive safe!
Publisher:
ISBN:
Category :
Languages : en
Pages : 114
Book Description
Illinois 2021 Rules of the Road handbook, drive safe!
Data Analytics and Applications of the Wearable Sensors in Healthcare
Author: Shabbir Syed-Abdul
Publisher: MDPI
ISBN: 3039363506
Category : Medical
Languages : en
Pages : 498
Book Description
This book provides a collection of comprehensive research articles on data analytics and applications of wearable devices in healthcare. This Special Issue presents 28 research studies from 137 authors representing 37 institutions from 19 countries. To facilitate the understanding of the research articles, we have organized the book to show various aspects covered in this field, such as eHealth, technology-integrated research, prediction models, rehabilitation studies, prototype systems, community health studies, ergonomics design systems, technology acceptance model evaluation studies, telemonitoring systems, warning systems, application of sensors in sports studies, clinical systems, feasibility studies, geographical location based systems, tracking systems, observational studies, risk assessment studies, human activity recognition systems, impact measurement systems, and a systematic review. We would like to take this opportunity to invite high quality research articles for our next Special Issue entitled “Digital Health and Smart Sensors for Better Management of Cancer and Chronic Diseases” as a part of Sensors journal.
Publisher: MDPI
ISBN: 3039363506
Category : Medical
Languages : en
Pages : 498
Book Description
This book provides a collection of comprehensive research articles on data analytics and applications of wearable devices in healthcare. This Special Issue presents 28 research studies from 137 authors representing 37 institutions from 19 countries. To facilitate the understanding of the research articles, we have organized the book to show various aspects covered in this field, such as eHealth, technology-integrated research, prediction models, rehabilitation studies, prototype systems, community health studies, ergonomics design systems, technology acceptance model evaluation studies, telemonitoring systems, warning systems, application of sensors in sports studies, clinical systems, feasibility studies, geographical location based systems, tracking systems, observational studies, risk assessment studies, human activity recognition systems, impact measurement systems, and a systematic review. We would like to take this opportunity to invite high quality research articles for our next Special Issue entitled “Digital Health and Smart Sensors for Better Management of Cancer and Chronic Diseases” as a part of Sensors journal.