Classification Methods for Remotely Sensed Data

Classification Methods for Remotely Sensed Data PDF Author: Paul Mather
Publisher: CRC Press
ISBN: 1420090747
Category : Technology & Engineering
Languages : en
Pages : 378

Get Book Here

Book Description
Since the publishing of the first edition of Classification Methods for Remotely Sensed Data in 2001, the field of pattern recognition has expanded in many new directions that make use of new technologies to capture data and more powerful computers to mine and process it. What seemed visionary but a decade ago is now being put to use and refined in

Classification Methods for Remotely Sensed Data

Classification Methods for Remotely Sensed Data PDF Author: Paul Mather
Publisher: CRC Press
ISBN: 1420090747
Category : Technology & Engineering
Languages : en
Pages : 378

Get Book Here

Book Description
Since the publishing of the first edition of Classification Methods for Remotely Sensed Data in 2001, the field of pattern recognition has expanded in many new directions that make use of new technologies to capture data and more powerful computers to mine and process it. What seemed visionary but a decade ago is now being put to use and refined in

Classification Methods for Remotely Sensed Data, Second Edition

Classification Methods for Remotely Sensed Data, Second Edition PDF Author: Brandt Tso
Publisher: CRC Press
ISBN:
Category : Business & Economics
Languages : en
Pages : 378

Get Book Here

Book Description
Keeping abreast of new developments, this new edition provides a comprehensive and up-to-date review of the entire field of classification methods applied to remotely sensed data. It provides seven fully revised chapters and two new chapters covering support vector machines (SVM) and decision trees.

Classification Methods for Remotely Sensed Data

Classification Methods for Remotely Sensed Data PDF Author: Taskin Kavzoglu
Publisher: CRC Press
ISBN: 104009905X
Category : Technology & Engineering
Languages : en
Pages : 444

Get Book Here

Book Description
The third edition of the bestselling Classification Methods for Remotely Sensed Data covers current state-of-the-art machine learning algorithms and developments in the analysis of remotely sensed data. This book is thoroughly updated to meet the needs of readers today and provides six new chapters on deep learning, feature extraction and selection, multisource image fusion, hyperparameter optimization, accuracy assessment with model explainability, and object-based image analysis, which is relatively a new paradigm in image processing and classification. It presents new AI-based analysis tools and metrics together with ongoing debates on accuracy assessment strategies and XAI methods. New in this edition: Provides comprehensive background on the theory of deep learning and its application to remote sensing data. Includes a chapter on hyperparameter optimization techniques to guarantee the highest performance in classification applications. Outlines the latest strategies and accuracy measures in accuracy assessment and summarizes accuracy metrics and assessment strategies. Discusses the methods used for explaining inherent structures and weighing the features of ML and AI algorithms that are critical for explaining the robustness of the models. This book is intended for industry professionals, researchers, academics, and graduate students who want a thorough and up-to-date guide to the many and varied techniques of image classification applied in the fields of geography, geospatial and earth sciences, electronic and computer science, environmental engineering, etc.

Classification Methods for Remotely Sensed Data

Classification Methods for Remotely Sensed Data PDF Author: Paul Mather
Publisher: CRC Press
ISBN: 9780203303566
Category : Technology & Engineering
Languages : en
Pages : 358

Get Book Here

Book Description
Remote sensing is an integral part of geography, GIS and cartography, used by academics in the field and professionals in all sorts of occupations. The 1990s saw the development of a range of new methods of classifying remote sensing images and data, both optical imaging and microwave imaging. This comprehensive survey of the various techniques pul

Assessing the Accuracy of Remotely Sensed Data

Assessing the Accuracy of Remotely Sensed Data PDF Author: Russell G. Congalton
Publisher: CRC Press
ISBN: 1420055135
Category : Mathematics
Languages : en
Pages : 210

Get Book Here

Book Description
Accuracy assessment of maps derived from remotely sensed data has continued to grow since the first edition of this groundbreaking book. As a result, the much-anticipated new edition is significantly expanded and enhanced to reflect growth in the field. The new edition features three new chapters, including: Fuzzy accuracy assessmentPositional accu

Computer Processing of Remotely-Sensed Images

Computer Processing of Remotely-Sensed Images PDF Author: Paul M. Mather
Publisher: John Wiley & Sons
ISBN: 0470021012
Category : Science
Languages : en
Pages : 442

Get Book Here

Book Description
Remotely-sensed images of the Earth's surface provide a valuable source of information about the geographical distribution and properties of natural and cultural features. This fully revised and updated edition of a highly regarded textbook deals with the mechanics of processing remotely-senses images. Presented in an accessible manner, the book covers a wide range of image processing and pattern recognition techniques. Features include: New topics on LiDAR data processing, SAR interferometry, the analysis of imaging spectrometer image sets and the use of the wavelet transform. An accompanying CD-ROM with: updated MIPS software, including modules for standard procedures such as image display, filtering, image transforms, graph plotting, import of data from a range of sensors. A set of exercises, including data sets, illustrating the application of discussed methods using the MIPS software. An extensive list of WWW resources including colour illustrations for easy download. For further information, including exercises and latest software information visit the Author's Website at: http://homepage.ntlworld.com/paul.mather/ComputerProcessing3/

Remote Sensing

Remote Sensing PDF Author: Robert A. Schowengerdt
Publisher: Elsevier
ISBN: 0080516106
Category : Technology & Engineering
Languages : en
Pages : 585

Get Book Here

Book Description
This book is a completely updated, greatly expanded version of the previously successful volume by the author. The Second Edition includes new results and data, and discusses a unified framework and rationale for designing and evaluating image processing algorithms.Written from the viewpoint that image processing supports remote sensing science, this book describes physical models for remote sensing phenomenology and sensors and how they contribute to models for remote-sensing data. The text then presents image processing techniques and interprets them in terms of these models. Spectral, spatial, and geometric models are used to introduce advanced image processing techniques such as hyperspectral image analysis, fusion of multisensor images, and digital elevationmodel extraction from stereo imagery.The material is suited for graduate level engineering, physical and natural science courses, or practicing remote sensing scientists. Each chapter is enhanced by student exercises designed to stimulate an understanding of the material. Over 300 figuresare produced specifically for this book, and numerous tables provide a rich bibliography of the research literature.

Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data

Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data PDF Author: Pramod K. Varshney
Publisher: Springer Science & Business Media
ISBN: 3662056054
Category : Science
Languages : en
Pages : 344

Get Book Here

Book Description
The first of its kind, this book reviews image processing tools and techniques including Independent Component Analysis, Mutual Information, Markov Random Field Models and Support Vector Machines. The book also explores a number of experimental examples based on a variety of remote sensors. The book will be useful to people involved in hyperspectral imaging research, as well as by remote-sensing data like geologists, hydrologists, environmental scientists, civil engineers and computer scientists.

Image Analysis, Classification and Change Detection in Remote Sensing

Image Analysis, Classification and Change Detection in Remote Sensing PDF Author: Morton J. Canty
Publisher: CRC Press
ISBN: 1466570377
Category : Mathematics
Languages : en
Pages : 575

Get Book Here

Book Description
Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for ENVI/IDL and Python, Third Edition introduces techniques used in the processing of remote sensing digital imagery. It emphasizes the development and implementation of statistically motivated, data-driven techniques. The author achieves this by tightly interweaving theory, algorithms, and computer codes. See What’s New in the Third Edition: Inclusion of extensive code in Python, with a cloud computing example New material on synthetic aperture radar (SAR) data analysis New illustrations in all chapters Extended theoretical development The material is self-contained and illustrated with many programming examples in IDL. The illustrations and applications in the text can be plugged in to the ENVI system in a completely transparent fashion and used immediately both for study and for processing of real imagery. The inclusion of Python-coded versions of the main image analysis algorithms discussed make it accessible to students and teachers without expensive ENVI/IDL licenses. Furthermore, Python platforms can take advantage of new cloud services that essentially provide unlimited computational power. The book covers both multispectral and polarimetric radar image analysis techniques in a way that makes both the differences and parallels clear and emphasizes the importance of choosing appropriate statistical methods. Each chapter concludes with exercises, some of which are small programming projects, intended to illustrate or justify the foregoing development, making this self-contained text ideal for self-study or classroom use.

Hyperspectral Remote Sensing of Vegetation, Second Edition, Four Volume Set

Hyperspectral Remote Sensing of Vegetation, Second Edition, Four Volume Set PDF Author: Prasad S. Thenkabail
Publisher: CRC Press
ISBN: 1351659111
Category : Technology & Engineering
Languages : en
Pages : 1637

Get Book Here

Book Description
Written by leading global experts, including pioneers in the field, the four-volume set on Hyperspectral Remote Sensing of Vegetation, Second Edition, reviews existing state-of-the-art knowledge, highlights advances made in different areas, and provides guidance for the appropriate use of hyperspectral data in the study and management of agricultural crops and natural vegetation. Volume I, Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation introduces the fundamentals of hyperspectral or imaging spectroscopy data, including hyperspectral data processes, sensor systems, spectral libraries, and data mining and analysis, covering both the strengths and limitations of these topics. Volume II, Hyperspectral Indices and Image Classifications for Agriculture and Vegetation evaluates the performance of hyperspectral narrowband or imaging spectroscopy data with specific emphasis on the uses and applications of hyperspectral narrowband vegetation indices in characterizing, modeling, mapping, and monitoring agricultural crops and vegetation. Volume III, Biophysical and Biochemical Characterization and Plant Species Studies demonstrates the methods that are developed and used to study terrestrial vegetation using hyperspectral data. This volume includes extensive discussions on hyperspectral data processing and how to implement data processing mechanisms for specific biophysical and biochemical applications such as crop yield modeling, crop biophysical and biochemical property characterization, and crop moisture assessments. Volume IV, Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation discusses the use of hyperspectral or imaging spectroscopy data in numerous specific and advanced applications, such as forest management, precision farming, managing invasive species, and local to global land cover change detection.