Author: Fritz Rohrlich
Publisher: World Scientific Publishing Company
ISBN: 9813106786
Category : Science
Languages : en
Pages : 323
Book Description
Originally written in 1964, this famous text is a study of the classical theory of charged particles. Many applications treat electrons as point particles. At the same time, there is a widespread belief that the theory of point particles is beset with various difficulties such as an infinite electrostatic self-energy, a rather doubtful equation of motion which admits physically meaningless solutions, violation of causality and others. The classical theory of charged particles has been largely ignored and has been left in an incomplete state since the discovery of quantum mechanics. Despite the great efforts of men such as Lorentz, Abraham, Poincaré, and Dirac, it is usually regarded as a “lost cause”. But thanks to progress made just a few years ago, the author is able to resolve the various problems and to complete this unfinished theory successfully.
Classical Charged Particles (Third Edition)
Author: Fritz Rohrlich
Publisher: World Scientific Publishing Company
ISBN: 9813106786
Category : Science
Languages : en
Pages : 323
Book Description
Originally written in 1964, this famous text is a study of the classical theory of charged particles. Many applications treat electrons as point particles. At the same time, there is a widespread belief that the theory of point particles is beset with various difficulties such as an infinite electrostatic self-energy, a rather doubtful equation of motion which admits physically meaningless solutions, violation of causality and others. The classical theory of charged particles has been largely ignored and has been left in an incomplete state since the discovery of quantum mechanics. Despite the great efforts of men such as Lorentz, Abraham, Poincaré, and Dirac, it is usually regarded as a “lost cause”. But thanks to progress made just a few years ago, the author is able to resolve the various problems and to complete this unfinished theory successfully.
Publisher: World Scientific Publishing Company
ISBN: 9813106786
Category : Science
Languages : en
Pages : 323
Book Description
Originally written in 1964, this famous text is a study of the classical theory of charged particles. Many applications treat electrons as point particles. At the same time, there is a widespread belief that the theory of point particles is beset with various difficulties such as an infinite electrostatic self-energy, a rather doubtful equation of motion which admits physically meaningless solutions, violation of causality and others. The classical theory of charged particles has been largely ignored and has been left in an incomplete state since the discovery of quantum mechanics. Despite the great efforts of men such as Lorentz, Abraham, Poincaré, and Dirac, it is usually regarded as a “lost cause”. But thanks to progress made just a few years ago, the author is able to resolve the various problems and to complete this unfinished theory successfully.
Classical Charged Particles
Author: Fritz Rohrlich
Publisher: CRC Press
ISBN: 0429689055
Category : Science
Languages : en
Pages : 332
Book Description
Widely-discussed in the theory of classical point charges are the difficulties of divergent self-energy, self-accelerating solutions, and pre-acceleration. This book explains the theory in the context of quantum electrodynamics, the neutral particle limit, and coherence with neighboring theories.
Publisher: CRC Press
ISBN: 0429689055
Category : Science
Languages : en
Pages : 332
Book Description
Widely-discussed in the theory of classical point charges are the difficulties of divergent self-energy, self-accelerating solutions, and pre-acceleration. This book explains the theory in the context of quantum electrodynamics, the neutral particle limit, and coherence with neighboring theories.
Classical Charged Particles (Third Edition).
Author: Fritz Rohrlich
Publisher:
ISBN: 9789812706775
Category :
Languages : en
Pages : 323
Book Description
Publisher:
ISBN: 9789812706775
Category :
Languages : en
Pages : 323
Book Description
Classical Electromagnetic Radiation
Author: Mark A. Heald
Publisher: Courier Corporation
ISBN: 0486490602
Category : Science
Languages : en
Pages : 594
Book Description
Newly corrected, this highly acclaimed text is suitable foradvanced physics courses. The authors present a very accessiblemacroscopic view of classical electromagnetics thatemphasizes integrating electromagnetic theory with physicaloptics. The survey follows the historical development ofphysics, culminating in the use of four-vector relativity tofully integrate electricity with magnetism.Corrected and emended reprint of the Brooks/Cole ThomsonLearning, 1994, third edition.
Publisher: Courier Corporation
ISBN: 0486490602
Category : Science
Languages : en
Pages : 594
Book Description
Newly corrected, this highly acclaimed text is suitable foradvanced physics courses. The authors present a very accessiblemacroscopic view of classical electromagnetics thatemphasizes integrating electromagnetic theory with physicaloptics. The survey follows the historical development ofphysics, culminating in the use of four-vector relativity tofully integrate electricity with magnetism.Corrected and emended reprint of the Brooks/Cole ThomsonLearning, 1994, third edition.
Classical Dynamics of Particles and Systems
Author: Jerry B. Marion
Publisher: Academic Press
ISBN: 1483272818
Category : Science
Languages : en
Pages : 593
Book Description
Classical Dynamics of Particles and Systems presents a modern and reasonably complete account of the classical mechanics of particles, systems of particles, and rigid bodies for physics students at the advanced undergraduate level. The book aims to present a modern treatment of classical mechanical systems in such a way that the transition to the quantum theory of physics can be made with the least possible difficulty; to acquaint the student with new mathematical techniques and provide sufficient practice in solving problems; and to impart to the student some degree of sophistication in handling both the formalism of the theory and the operational technique of problem solving. Vector methods are developed in the first two chapters and are used throughout the book. Other chapters cover the fundamentals of Newtonian mechanics, the special theory of relativity, gravitational attraction and potentials, oscillatory motion, Lagrangian and Hamiltonian dynamics, central-force motion, two-particle collisions, and the wave equation.
Publisher: Academic Press
ISBN: 1483272818
Category : Science
Languages : en
Pages : 593
Book Description
Classical Dynamics of Particles and Systems presents a modern and reasonably complete account of the classical mechanics of particles, systems of particles, and rigid bodies for physics students at the advanced undergraduate level. The book aims to present a modern treatment of classical mechanical systems in such a way that the transition to the quantum theory of physics can be made with the least possible difficulty; to acquaint the student with new mathematical techniques and provide sufficient practice in solving problems; and to impart to the student some degree of sophistication in handling both the formalism of the theory and the operational technique of problem solving. Vector methods are developed in the first two chapters and are used throughout the book. Other chapters cover the fundamentals of Newtonian mechanics, the special theory of relativity, gravitational attraction and potentials, oscillatory motion, Lagrangian and Hamiltonian dynamics, central-force motion, two-particle collisions, and the wave equation.
Electrodynamics and Classical Theory of Fields and Particles
Author: A. O. Barut
Publisher: Courier Corporation
ISBN: 0486158713
Category : Science
Languages : en
Pages : 258
Book Description
Comprehensive graduate-level text by a distinguished theoretical physicist reveals the classical underpinnings of modern quantum field theory. Topics include space-time, Lorentz transformations, conservation laws, equations of motion, Green’s functions, and more. 1964 edition.
Publisher: Courier Corporation
ISBN: 0486158713
Category : Science
Languages : en
Pages : 258
Book Description
Comprehensive graduate-level text by a distinguished theoretical physicist reveals the classical underpinnings of modern quantum field theory. Topics include space-time, Lorentz transformations, conservation laws, equations of motion, Green’s functions, and more. 1964 edition.
Gauge Theories of the Strong, Weak, and Electromagnetic Interactions
Author: Chris Quigg
Publisher: Princeton University Press
ISBN: 0691135487
Category : Science
Languages : en
Pages : 496
Book Description
A thoroughly revised edition of a landmark textbook on gauge theories and their applications to particle physics This completely revised and updated graduate-level textbook is an ideal introduction to gauge theories and their applications to high-energy particle physics, and takes an in-depth look at two new laws of nature—quantum chromodynamics and the electroweak theory. From quantum electrodynamics through unified theories of the interactions among leptons and quarks, Chris Quigg examines the logic and structure behind gauge theories and the experimental underpinnings of today's theories. Quigg emphasizes how we know what we know, and in the era of the Large Hadron Collider, his insightful survey of the standard model and the next great questions for particle physics makes for compelling reading. The brand-new edition shows how the electroweak theory developed in conversation with experiment. Featuring a wide-ranging treatment of electroweak symmetry breaking, the physics of the Higgs boson, and the importance of the 1-TeV scale, the book moves beyond established knowledge and investigates the path toward unified theories of strong, weak, and electromagnetic interactions. Explicit calculations and diverse exercises allow readers to derive the consequences of these theories. Extensive annotated bibliographies accompany each chapter, amplify points of conceptual or technical interest, introduce further applications, and lead readers to the research literature. Students and seasoned practitioners will profit from the text's current insights, and specialists wishing to understand gauge theories will find the book an ideal reference for self-study. Brand-new edition of a landmark text introducing gauge theories Consistent attention to how we know what we know Explicit calculations develop concepts and engage with experiment Interesting and diverse problems sharpen skills and ideas Extensive annotated bibliographies
Publisher: Princeton University Press
ISBN: 0691135487
Category : Science
Languages : en
Pages : 496
Book Description
A thoroughly revised edition of a landmark textbook on gauge theories and their applications to particle physics This completely revised and updated graduate-level textbook is an ideal introduction to gauge theories and their applications to high-energy particle physics, and takes an in-depth look at two new laws of nature—quantum chromodynamics and the electroweak theory. From quantum electrodynamics through unified theories of the interactions among leptons and quarks, Chris Quigg examines the logic and structure behind gauge theories and the experimental underpinnings of today's theories. Quigg emphasizes how we know what we know, and in the era of the Large Hadron Collider, his insightful survey of the standard model and the next great questions for particle physics makes for compelling reading. The brand-new edition shows how the electroweak theory developed in conversation with experiment. Featuring a wide-ranging treatment of electroweak symmetry breaking, the physics of the Higgs boson, and the importance of the 1-TeV scale, the book moves beyond established knowledge and investigates the path toward unified theories of strong, weak, and electromagnetic interactions. Explicit calculations and diverse exercises allow readers to derive the consequences of these theories. Extensive annotated bibliographies accompany each chapter, amplify points of conceptual or technical interest, introduce further applications, and lead readers to the research literature. Students and seasoned practitioners will profit from the text's current insights, and specialists wishing to understand gauge theories will find the book an ideal reference for self-study. Brand-new edition of a landmark text introducing gauge theories Consistent attention to how we know what we know Explicit calculations develop concepts and engage with experiment Interesting and diverse problems sharpen skills and ideas Extensive annotated bibliographies
Theoretical Mechanics of Particles and Continua
Author: Alexander L. Fetter
Publisher: Courier Corporation
ISBN: 0486432610
Category : Science
Languages : en
Pages : 596
Book Description
This two-part text fills what has often been a void in the first-year graduate physics curriculum. Through its examination of particles and continua, it supplies a lucid and self-contained account of classical mechanics — which in turn provides a natural framework for introducing many of the advanced mathematical concepts in physics. The text opens with Newton's laws of motion and systematically develops the dynamics of classical particles, with chapters on basic principles, rotating coordinate systems, lagrangian formalism, small oscillations, dynamics of rigid bodies, and hamiltonian formalism, including a brief discussion of the transition to quantum mechanics. This part of the book also considers examples of the limiting behavior of many particles, facilitating the eventual transition to a continuous medium. The second part deals with classical continua, including chapters on string membranes, sound waves, surface waves on nonviscous fluids, heat conduction, viscous fluids, and elastic media. Each of these self-contained chapters provides the relevant physical background and develops the appropriate mathematical techniques, and problems of varying difficulty appear throughout the text.
Publisher: Courier Corporation
ISBN: 0486432610
Category : Science
Languages : en
Pages : 596
Book Description
This two-part text fills what has often been a void in the first-year graduate physics curriculum. Through its examination of particles and continua, it supplies a lucid and self-contained account of classical mechanics — which in turn provides a natural framework for introducing many of the advanced mathematical concepts in physics. The text opens with Newton's laws of motion and systematically develops the dynamics of classical particles, with chapters on basic principles, rotating coordinate systems, lagrangian formalism, small oscillations, dynamics of rigid bodies, and hamiltonian formalism, including a brief discussion of the transition to quantum mechanics. This part of the book also considers examples of the limiting behavior of many particles, facilitating the eventual transition to a continuous medium. The second part deals with classical continua, including chapters on string membranes, sound waves, surface waves on nonviscous fluids, heat conduction, viscous fluids, and elastic media. Each of these self-contained chapters provides the relevant physical background and develops the appropriate mathematical techniques, and problems of varying difficulty appear throughout the text.
Classical Electromagnetic Radiation, Third Edition
Author: Mark A. Heald
Publisher: Courier Corporation
ISBN: 0486283429
Category : Science
Languages : en
Pages : 594
Book Description
This newly corrected, highly acclaimed text offers intermediate-level juniors and first-year graduate students of physics a rigorous treatment of classical electromagnetics. The authors present a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism. Starting with a brief review of static electricity and magnetism, the treatment advances to examinations of multipole fields, the equations of Laplace and Poisson, dynamic electromagnetism, electromagnetic waves, reflection and refraction, and waveguides. Subsequent chapters explore retarded potentials and fields and radiation by charged particles; antennas; classical electron theory; interference and coherence; scalar diffraction theory and the Fraunhofer limit; Fresnel diffraction and the transition to geometrical optics; and relativistic electrodynamics. A basic knowledge of vector calculus and Fourier analysis is assumed, and several helpful appendices supplement the text. An extensive Solutions Manual is also available.
Publisher: Courier Corporation
ISBN: 0486283429
Category : Science
Languages : en
Pages : 594
Book Description
This newly corrected, highly acclaimed text offers intermediate-level juniors and first-year graduate students of physics a rigorous treatment of classical electromagnetics. The authors present a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism. Starting with a brief review of static electricity and magnetism, the treatment advances to examinations of multipole fields, the equations of Laplace and Poisson, dynamic electromagnetism, electromagnetic waves, reflection and refraction, and waveguides. Subsequent chapters explore retarded potentials and fields and radiation by charged particles; antennas; classical electron theory; interference and coherence; scalar diffraction theory and the Fraunhofer limit; Fresnel diffraction and the transition to geometrical optics; and relativistic electrodynamics. A basic knowledge of vector calculus and Fourier analysis is assumed, and several helpful appendices supplement the text. An extensive Solutions Manual is also available.
Classical And Quantum Dissipative Systems
Author: Mohsen Razavy
Publisher: World Scientific
ISBN: 1783260394
Category : Science
Languages : en
Pages : 351
Book Description
This book discusses issues associated with the quantum mechanical formulation of dissipative systems. It begins with an introductory review of phenomenological damping forces, and the construction of the Lagrangian and Hamiltonian for the damped motion. It is shown, in addition to these methods, that classical dissipative forces can also be derived from solvable many-body problems. A detailed discussion of these derived forces and their dependence on dynamical variables is also presented. The second part of this book investigates the use of classical formulation in the quantization of dynamical systems under the influence of dissipative forces. The results show that, while a satisfactory solution to the problem cannot be found, different formulations represent different approximations to the complete solution of two interacting systems. The third and final part of the book focuses on the problem of dissipation in interacting quantum mechanical systems, as well as the connection of some of these models to their classical counterparts. A number of important applications, such as the theory of heavy-ion scattering and the motion of a radiating electron, are also discussed./a
Publisher: World Scientific
ISBN: 1783260394
Category : Science
Languages : en
Pages : 351
Book Description
This book discusses issues associated with the quantum mechanical formulation of dissipative systems. It begins with an introductory review of phenomenological damping forces, and the construction of the Lagrangian and Hamiltonian for the damped motion. It is shown, in addition to these methods, that classical dissipative forces can also be derived from solvable many-body problems. A detailed discussion of these derived forces and their dependence on dynamical variables is also presented. The second part of this book investigates the use of classical formulation in the quantization of dynamical systems under the influence of dissipative forces. The results show that, while a satisfactory solution to the problem cannot be found, different formulations represent different approximations to the complete solution of two interacting systems. The third and final part of the book focuses on the problem of dissipation in interacting quantum mechanical systems, as well as the connection of some of these models to their classical counterparts. A number of important applications, such as the theory of heavy-ion scattering and the motion of a radiating electron, are also discussed./a