Classical and Modern Methods in Summability

Classical and Modern Methods in Summability PDF Author: Johann Boos
Publisher: Clarendon Press
ISBN: 9780198501657
Category : Mathematics
Languages : en
Pages : 616

Get Book Here

Book Description
Summability is a mathematical topic with a long tradition and many applications in, for example, function theory, number theory, and stochastics. It was originally based on classical analytical methods, but was strongly influenced by modern functional analytical methods during the last seven decades. The present book aims to introduce the reader to the wide field of summability and its applications, and provides an overview of the most important classical and modern methods used. Part I contains a short general introduction to summability, the basic classical theory concerning mainly inclusion theorems and theorems of the Silverman-Toeplitz type, a presentation of the most important classes of summability methods, Tauberian theorems, and applications of matrix methods. The proofs in Part I are exclusively done by applying classical analytical methods. Part II is concerned with modern functional analytical methods in summability, and contains the essential functional analytical basis required in later parts of the book, topologization of sequence spaces as K- and KF-spaces, domains of matrix methods as FK-spaces and their topological structure. In this part the proofs are of functional analytical nature only. Part III of the present book deals with topics in summability and topological sequence spaces which require the combination of classical and modern methods. It covers investigations of the constistency of matrix methods and of the bounded domain of matrix methods via Saks space theory, and the presentation of some aspects in topological sequence spaces. Lecturers, graduate students, and researchers working in summability and related topics will find this book a useful introduction and reference work.

Classical and Modern Methods in Summability

Classical and Modern Methods in Summability PDF Author: Johann Boos
Publisher: Clarendon Press
ISBN: 9780198501657
Category : Mathematics
Languages : en
Pages : 616

Get Book Here

Book Description
Summability is a mathematical topic with a long tradition and many applications in, for example, function theory, number theory, and stochastics. It was originally based on classical analytical methods, but was strongly influenced by modern functional analytical methods during the last seven decades. The present book aims to introduce the reader to the wide field of summability and its applications, and provides an overview of the most important classical and modern methods used. Part I contains a short general introduction to summability, the basic classical theory concerning mainly inclusion theorems and theorems of the Silverman-Toeplitz type, a presentation of the most important classes of summability methods, Tauberian theorems, and applications of matrix methods. The proofs in Part I are exclusively done by applying classical analytical methods. Part II is concerned with modern functional analytical methods in summability, and contains the essential functional analytical basis required in later parts of the book, topologization of sequence spaces as K- and KF-spaces, domains of matrix methods as FK-spaces and their topological structure. In this part the proofs are of functional analytical nature only. Part III of the present book deals with topics in summability and topological sequence spaces which require the combination of classical and modern methods. It covers investigations of the constistency of matrix methods and of the bounded domain of matrix methods via Saks space theory, and the presentation of some aspects in topological sequence spaces. Lecturers, graduate students, and researchers working in summability and related topics will find this book a useful introduction and reference work.

Classical and Modern Methods in Summability

Classical and Modern Methods in Summability PDF Author: Johann Boos
Publisher:
ISBN:
Category : Summability theory
Languages : en
Pages : 0

Get Book Here

Book Description


Current Topics in Summability Theory and Applications

Current Topics in Summability Theory and Applications PDF Author: Hemen Dutta
Publisher: Springer
ISBN: 9811009139
Category : Mathematics
Languages : en
Pages : 436

Get Book Here

Book Description
This book discusses recent developments in and contemporary research on summability theory, including general summability methods, direct theorems on summability, absolute and strong summability, special methods of summability, functional analytic methods in summability, and related topics and applications. All contributing authors are eminent scientists, researchers and scholars in their respective fields, and hail from around the world. The book can be used as a textbook for graduate and senior undergraduate students, and as a valuable reference guide for researchers and practitioners in the fields of summability theory and functional analysis. Summability theory is generally used in analysis and applied mathematics. It plays an important part in the engineering sciences, and various aspects of the theory have long since been studied by researchers all over the world.

Strange Functions in Real Analysis

Strange Functions in Real Analysis PDF Author: Alexander Kharazishvili
Publisher: CRC Press
ISBN: 1351650513
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
Strange Functions in Real Analysis, Third Edition differs from the previous editions in that it includes five new chapters as well as two appendices. More importantly, the entire text has been revised and contains more detailed explanations of the presented material. In doing so, the book explores a number of important examples and constructions of pathological functions. After introducing basic concepts, the author begins with Cantor and Peano-type functions, then moves effortlessly to functions whose constructions require what is essentially non-effective methods. These include functions without the Baire property, functions associated with a Hamel basis of the real line and Sierpinski-Zygmund functions that are discontinuous on each subset of the real line having the cardinality continuum. Finally, the author considers examples of functions whose existence cannot be established without the help of additional set-theoretical axioms. On the whole, the book is devoted to strange functions (and point sets) in real analysis and their applications.

Scientia Magna, Vol. 7, No. 4, 2011

Scientia Magna, Vol. 7, No. 4, 2011 PDF Author: Zhang Wenpeng
Publisher: Infinite Study
ISBN: 1599731819
Category :
Languages : en
Pages : 128

Get Book Here

Book Description
Papers on Smarandache function S(n), Erdos-Smarandache numbers, generalized intuitionistic fuzzy contra continuous functions and its applications, the asymptotic properties of triangular base sequence, linear operators preserving commuting pairs of matrices over semirings, two inequalities for the composition of arithmetic functions, compactness and proper maps in the category of generated spaces, and similar topics. Contributors: R. Ma, Y. Zhang, R. Dhavaseelan, M. Dragan, M. Bencze, Q. Yang, G. Mirhosseinkhani, C. Fu, S. S. Billing, B. Hazarika, and others.

Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness

Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness PDF Author: Józef Banaś
Publisher: Springer
ISBN: 9811037221
Category : Mathematics
Languages : en
Pages : 491

Get Book Here

Book Description
This book offers a comprehensive treatment of the theory of measures of noncompactness. It discusses various applications of the theory of measures of noncompactness, in particular, by addressing the results and methods of fixed-point theory. The concept of a measure of noncompactness is very useful for the mathematical community working in nonlinear analysis. Both these theories are especially useful in investigations connected with differential equations, integral equations, functional integral equations and optimization theory. Thus, one of the book’s central goals is to collect and present sufficient conditions for the solvability of such equations. The results are established in miscellaneous function spaces, and particular attention is paid to fractional calculus.

Multiplier Convergent Series

Multiplier Convergent Series PDF Author: Charles Swartz
Publisher: World Scientific
ISBN: 9812833889
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
If ? is a space of scalar-valued sequences, then a series ?j xj in a topological vector space X is ?-multiplier convergent if the series ?j=18 tjxj converges in X for every {tj} e?. This monograph studies properties of such series and gives applications to topics in locally convex spaces and vector-valued measures. A number of versions of the OrliczOCoPettis theorem are derived for multiplier convergent series with respect to various locally convex topologies. Variants of the classical HahnOCoSchur theorem on the equivalence of weak and norm convergent series in ?1 are also developed for multiplier convergent series. Finally, the notion of multiplier convergent series is extended to operator-valued series and vector-valued multipliers.

Cyclic Modules and the Structure of Rings

Cyclic Modules and the Structure of Rings PDF Author: S. K. Jain
Publisher: Oxford University Press
ISBN: 0191641545
Category : Mathematics
Languages : en
Pages :

Get Book Here

Book Description
This unique and comprehensive volume provides an up-to-date account of the literature on the subject of determining the structure of rings over which cyclic modules or proper cyclic modules have a finiteness condition or a homological property. The finiteness conditions and homological properties are closely interrelated in the sense that either hypothesis induces the other in some form. This is the first book to bring all of this important material on the subject together. Over the last 25 years or more numerous mathematicians have investigated rings whose factor rings or factor modules have a finiteness condition or a homological property. They made important contributions leading to new directions and questions, which are listed at the end of each chapter for the benefit of future researchers. There is a wealth of material on the topic which is combined in this book, it contains more than 200 references and is not claimed to be exhaustive. This book will appeal to graduate students, researchers, and professionals in algebra with a knowledge of basic noncommutative ring theory, as well as module theory and homological algebra, equivalent to a one-year graduate course in the theory of rings and modules.

Spectral Theory and Differential Operators

Spectral Theory and Differential Operators PDF Author: David Eric Edmunds
Publisher: Oxford University Press
ISBN: 0198812051
Category : Mathematics
Languages : en
Pages : 610

Get Book Here

Book Description
This book is an updated version of the classic 1987 monograph "Spectral Theory and Differential Operators".The original book was a cutting edge account of the theory of bounded and closed linear operators in Banach and Hilbert spaces relevant to spectral problems involving differential equations. It is accessible to a graduate student as well as meeting the needs of seasoned researchers in mathematics and mathematical physics. This revised edition corrects various errors, and adds extensive notes to the end of each chapter which describe the considerable progress that has been made on the topic in the last 30 years.

On the Topology and Future Stability of the Universe

On the Topology and Future Stability of the Universe PDF Author: Hans Ringström
Publisher: OUP Oxford
ISBN: 0191669776
Category : Mathematics
Languages : en
Pages : 733

Get Book Here

Book Description
The standard starting point in cosmology is the cosmological principle; the assumption that the universe is spatially homogeneous and isotropic. After imposing this assumption, the only freedom left, as far as the geometry is concerned, is the choice of one out of three permissible spatial geometries, and one scalar function of time. Combining the cosmological principle with an appropriate description of the matter leads to the standard models. It is worth noting that these models yield quite a successful description of our universe. However, even though the universe may, or may not, be almost spatially homogeneous and isotropic, it is clear that the cosmological principle is not exactly satisfied. This leads to several questions. The most natural one concerns stability: given initial data corresponding to an expanding model of the standard type, do small perturbations give rise to solutions that are similar to the future? Another question concerns the shape of the universe: what are the restrictions if we only assume the universe to appear almost spatially homogeneous and isotropic to every observer? The main purpose of the book is to address these questions. However, to begin with, it is necessary to develop the general theory of the Cauchy problem for the Einstein-Vlasov equations. In order to to make the results accessible to researchers who are not mathematicians, but who are familiar with general relativity, the book contains an extensive prologue putting the results into a more general context.