Claim Models

Claim Models PDF Author: Greg Taylor
Publisher: MDPI
ISBN: 3039286641
Category : Business & Economics
Languages : en
Pages : 108

Get Book Here

Book Description
This collection of articles addresses the most modern forms of loss reserving methodology: granular models and machine learning models. New methodologies come with questions about their applicability. These questions are discussed in one article, which focuses on the relative merits of granular and machine learning models. Others illustrate applications with real-world data. The examples include neural networks, which, though well known in some disciplines, have previously been limited in the actuarial literature. This volume expands on that literature, with specific attention to their application to loss reserving. For example, one of the articles introduces the application of neural networks of the gated recurrent unit form to the actuarial literature, whereas another uses a penalized neural network. Neural networks are not the only form of machine learning, and two other papers outline applications of gradient boosting and regression trees respectively. Both articles construct loss reserves at the individual claim level so that these models resemble granular models. One of these articles provides a practical application of the model to claim watching, the action of monitoring claim development and anticipating major features. Such watching can be used as an early warning system or for other administrative purposes. Overall, this volume is an extremely useful addition to the libraries of those working at the loss reserving frontier.

Claim Models

Claim Models PDF Author: Greg Taylor
Publisher: MDPI
ISBN: 3039286641
Category : Business & Economics
Languages : en
Pages : 108

Get Book Here

Book Description
This collection of articles addresses the most modern forms of loss reserving methodology: granular models and machine learning models. New methodologies come with questions about their applicability. These questions are discussed in one article, which focuses on the relative merits of granular and machine learning models. Others illustrate applications with real-world data. The examples include neural networks, which, though well known in some disciplines, have previously been limited in the actuarial literature. This volume expands on that literature, with specific attention to their application to loss reserving. For example, one of the articles introduces the application of neural networks of the gated recurrent unit form to the actuarial literature, whereas another uses a penalized neural network. Neural networks are not the only form of machine learning, and two other papers outline applications of gradient boosting and regression trees respectively. Both articles construct loss reserves at the individual claim level so that these models resemble granular models. One of these articles provides a practical application of the model to claim watching, the action of monitoring claim development and anticipating major features. Such watching can be used as an early warning system or for other administrative purposes. Overall, this volume is an extremely useful addition to the libraries of those working at the loss reserving frontier.

Actuarial Modelling of Claim Counts

Actuarial Modelling of Claim Counts PDF Author: Michel Denuit
Publisher: John Wiley & Sons
ISBN: 9780470517413
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
There are a wide range of variables for actuaries to consider when calculating a motorist’s insurance premium, such as age, gender and type of vehicle. Further to these factors, motorists’ rates are subject to experience rating systems, including credibility mechanisms and Bonus Malus systems (BMSs). Actuarial Modelling of Claim Counts presents a comprehensive treatment of the various experience rating systems and their relationships with risk classification. The authors summarize the most recent developments in the field, presenting ratemaking systems, whilst taking into account exogenous information. The text: Offers the first self-contained, practical approach to a priori and a posteriori ratemaking in motor insurance. Discusses the issues of claim frequency and claim severity, multi-event systems, and the combinations of deductibles and BMSs. Introduces recent developments in actuarial science and exploits the generalised linear model and generalised linear mixed model to achieve risk classification. Presents credibility mechanisms as refinements of commercial BMSs. Provides practical applications with real data sets processed with SAS software. Actuarial Modelling of Claim Counts is essential reading for students in actuarial science, as well as practicing and academic actuaries. It is also ideally suited for professionals involved in the insurance industry, applied mathematicians, quantitative economists, financial engineers and statisticians.

Nonlife Actuarial Models

Nonlife Actuarial Models PDF Author: Yiu-Kuen Tse
Publisher: Cambridge University Press
ISBN: 0521764653
Category : Business & Economics
Languages : en
Pages : 541

Get Book Here

Book Description
This class-tested undergraduate textbook covers the entire syllabus for Exam C of the Society of Actuaries (SOA).

Generalized Linear Models for Insurance Rating

Generalized Linear Models for Insurance Rating PDF Author: Mark Goldburd
Publisher:
ISBN: 9780996889728
Category :
Languages : en
Pages : 106

Get Book Here

Book Description


Bonus-Malus Systems in Automobile Insurance

Bonus-Malus Systems in Automobile Insurance PDF Author: Jean Lemaire
Publisher: Springer Science & Business Media
ISBN: 9401106312
Category : Business & Economics
Languages : en
Pages : 300

Get Book Here

Book Description
Most insurers around the world have introduced some form of merit-rating in automobile third party liability insurance. Such systems, penalizing at-fault accidents by premium surcharges and rewarding claim-free years by discounts, are called bonus-malus systems (BMS) in Europe and Asia. With the current deregulation trends that concern most insurance markets around the world, many companies will need to develop their own BMS. The main objective of the book is to provide them models to design BMS that meet their objectives. Part I of the book contains an overall presentation of the pros and cons of merit-rating, a case study and a review of the different probability distributions that can be used to model the number of claims in an automobile portfolio. In Part II, 30 systems from 22 different countries, are evaluated and ranked according to their `toughness' towards policyholders. Four tools are created to evaluate that toughness and provide a tentative classification of all systems. Then, factor analysis is used to aggregate and summarize the data, and provide a final ranking of all systems. Part III is an up-to-date review of all the probability models that have been proposed for the design of an optimal BMS. The application of these models would enable the reader to devise the system that is ideally suited to the behavior of the policyholders of his own insurance company. Finally, Part IV analyses an alternative to BMS; the introduction of a policy with a deductible.

Artificial Intelligence in Medical Imaging

Artificial Intelligence in Medical Imaging PDF Author: Erik R. Ranschaert
Publisher: Springer
ISBN: 3319948784
Category : Medical
Languages : en
Pages : 369

Get Book Here

Book Description
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.

Model Rules of Professional Conduct

Model Rules of Professional Conduct PDF Author: American Bar Association. House of Delegates
Publisher: American Bar Association
ISBN: 9781590318737
Category : Law
Languages : en
Pages : 216

Get Book Here

Book Description
The Model Rules of Professional Conduct provides an up-to-date resource for information on legal ethics. Federal, state and local courts in all jurisdictions look to the Rules for guidance in solving lawyer malpractice cases, disciplinary actions, disqualification issues, sanctions questions and much more. In this volume, black-letter Rules of Professional Conduct are followed by numbered Comments that explain each Rule's purpose and provide suggestions for its practical application. The Rules will help you identify proper conduct in a variety of given situations, review those instances where discretionary action is possible, and define the nature of the relationship between you and your clients, colleagues and the courts.

Loss Models

Loss Models PDF Author: Stuart A. Klugman
Publisher: John Wiley & Sons
ISBN: 0470391332
Category : Business & Economics
Languages : en
Pages : 758

Get Book Here

Book Description
An update of one of the most trusted books on constructing and analyzing actuarial models Written by three renowned authorities in the actuarial field, Loss Models, Third Edition upholds the reputation for excellence that has made this book required reading for the Society of Actuaries (SOA) and Casualty Actuarial Society (CAS) qualification examinations. This update serves as a complete presentation of statistical methods for measuring risk and building models to measure loss in real-world events. This book maintains an approach to modeling and forecasting that utilizes tools related to risk theory, loss distributions, and survival models. Random variables, basic distributional quantities, the recursive method, and techniques for classifying and creating distributions are also discussed. Both parametric and non-parametric estimation methods are thoroughly covered along with advice for choosing an appropriate model. Features of the Third Edition include: Extended discussion of risk management and risk measures, including Tail-Value-at-Risk (TVaR) New sections on extreme value distributions and their estimation Inclusion of homogeneous, nonhomogeneous, and mixed Poisson processes Expanded coverage of copula models and their estimation Additional treatment of methods for constructing confidence regions when there is more than one parameter The book continues to distinguish itself by providing over 400 exercises that have appeared on previous SOA and CAS examinations. Intriguing examples from the fields of insurance and business are discussed throughout, and all data sets are available on the book's FTP site, along with programs that assist with conducting loss model analysis. Loss Models, Third Edition is an essential resource for students and aspiring actuaries who are preparing to take the SOA and CAS preliminary examinations. It is also a must-have reference for professional actuaries, graduate students in the actuarial field, and anyone who works with loss and risk models in their everyday work. To explore our additional offerings in actuarial exam preparation visit www.wiley.com/go/actuarialexamprep.

Spin Sucks

Spin Sucks PDF Author: Gini Dietrich
Publisher: Pearson Education
ISBN: 078974886X
Category : Business & Economics
Languages : en
Pages : 165

Get Book Here

Book Description
Go beyond PR spin! Master better ways to communicate honestly and regain the trust of your customers and stakeholders with this book.

Stochastic Loss Reserving Using Generalized Linear Models

Stochastic Loss Reserving Using Generalized Linear Models PDF Author: Greg Taylor
Publisher:
ISBN: 9780996889704
Category :
Languages : en
Pages : 100

Get Book Here

Book Description
In this monograph, authors Greg Taylor and Gráinne McGuire discuss generalized linear models (GLM) for loss reserving, beginning with strong emphasis on the chain ladder. The chain ladder is formulated in a GLM context, as is the statistical distribution of the loss reserve. This structure is then used to test the need for departure from the chain ladder model and to consider natural extensions of the chain ladder model that lend themselves to the GLM framework.