Author: Claudi Alsina
Publisher: American Mathematical Soc.
ISBN: 1614442010
Category : Mathematics
Languages : en
Pages : 321
Book Description
Theorems and their proofs lie at the heart of mathematics. In speaking of the purely aesthetic qualities of theorems and proofs, G. H. Hardy wrote that in beautiful proofs 'there is a very high degree of unexpectedness, combined with inevitability and economy.' Charming Proofs present a collection of remarkable proofs in elementary mathematics that are exceptionally elegant, full of ingenuity, and succinct. By means of a surprising argument or a powerful visual representation, the proofs in this collection will invite readers to enjoy the beauty of mathematics, to share their discoveries with others, and to become involved in the process of creating new proofs. Charming Proofs is organized as follows. Following a short introduction about proofs and the process of creating proofs, the authors present, in twelve chapters, a wide and varied selection of proofs they consider charming. Topics include the integers, selected real numbers, points in the plane, triangles, squares and other polygons, curves, inequalities, plane tilings, origami, colorful proofs, threedimensional geometry, etc. At the end of each chapter are some challenges that will draw the reader into the process of creating charming proofs. There are over 130 such challenges. Charming Proofs concludes with solutions to all of the challenges, references, and a complete index. As in the authors' previous books with the MAA (Math Made Visual and When Less Is More), secondary school, college, and university teachers may wish to use some of the charming proofs in their classrooms to introduce their students to mathematical elegance. Some may wish to use the book as a supplement in an introductory course on proofs, mathematical reasoning, or problem solving.
Charming Proofs
Author: Claudi Alsina
Publisher: American Mathematical Soc.
ISBN: 1614442010
Category : Mathematics
Languages : en
Pages : 321
Book Description
Theorems and their proofs lie at the heart of mathematics. In speaking of the purely aesthetic qualities of theorems and proofs, G. H. Hardy wrote that in beautiful proofs 'there is a very high degree of unexpectedness, combined with inevitability and economy.' Charming Proofs present a collection of remarkable proofs in elementary mathematics that are exceptionally elegant, full of ingenuity, and succinct. By means of a surprising argument or a powerful visual representation, the proofs in this collection will invite readers to enjoy the beauty of mathematics, to share their discoveries with others, and to become involved in the process of creating new proofs. Charming Proofs is organized as follows. Following a short introduction about proofs and the process of creating proofs, the authors present, in twelve chapters, a wide and varied selection of proofs they consider charming. Topics include the integers, selected real numbers, points in the plane, triangles, squares and other polygons, curves, inequalities, plane tilings, origami, colorful proofs, threedimensional geometry, etc. At the end of each chapter are some challenges that will draw the reader into the process of creating charming proofs. There are over 130 such challenges. Charming Proofs concludes with solutions to all of the challenges, references, and a complete index. As in the authors' previous books with the MAA (Math Made Visual and When Less Is More), secondary school, college, and university teachers may wish to use some of the charming proofs in their classrooms to introduce their students to mathematical elegance. Some may wish to use the book as a supplement in an introductory course on proofs, mathematical reasoning, or problem solving.
Publisher: American Mathematical Soc.
ISBN: 1614442010
Category : Mathematics
Languages : en
Pages : 321
Book Description
Theorems and their proofs lie at the heart of mathematics. In speaking of the purely aesthetic qualities of theorems and proofs, G. H. Hardy wrote that in beautiful proofs 'there is a very high degree of unexpectedness, combined with inevitability and economy.' Charming Proofs present a collection of remarkable proofs in elementary mathematics that are exceptionally elegant, full of ingenuity, and succinct. By means of a surprising argument or a powerful visual representation, the proofs in this collection will invite readers to enjoy the beauty of mathematics, to share their discoveries with others, and to become involved in the process of creating new proofs. Charming Proofs is organized as follows. Following a short introduction about proofs and the process of creating proofs, the authors present, in twelve chapters, a wide and varied selection of proofs they consider charming. Topics include the integers, selected real numbers, points in the plane, triangles, squares and other polygons, curves, inequalities, plane tilings, origami, colorful proofs, threedimensional geometry, etc. At the end of each chapter are some challenges that will draw the reader into the process of creating charming proofs. There are over 130 such challenges. Charming Proofs concludes with solutions to all of the challenges, references, and a complete index. As in the authors' previous books with the MAA (Math Made Visual and When Less Is More), secondary school, college, and university teachers may wish to use some of the charming proofs in their classrooms to introduce their students to mathematical elegance. Some may wish to use the book as a supplement in an introductory course on proofs, mathematical reasoning, or problem solving.
Icons of Mathematics
Author: Claudi Alsina
Publisher: MAA
ISBN: 0883853523
Category : Mathematics
Languages : en
Pages : 348
Book Description
An exploration of the mathematics of twenty geometric diagrams that play a crucial role in visualizing mathematical proofs. Those teaching undergraduate mathematics will find material here for problem solving sessions, as well as enrichment material for courses on proofs and mathematical reasoning.
Publisher: MAA
ISBN: 0883853523
Category : Mathematics
Languages : en
Pages : 348
Book Description
An exploration of the mathematics of twenty geometric diagrams that play a crucial role in visualizing mathematical proofs. Those teaching undergraduate mathematics will find material here for problem solving sessions, as well as enrichment material for courses on proofs and mathematical reasoning.
Q.E.D.
Author:
Publisher: Bloomsbury Publishing USA
ISBN: 0802714315
Category : Mathematics
Languages : en
Pages : 65
Book Description
Q.E.D. presents some of the most famous mathematical proofs in a charming book that will appeal to nonmathematicians and math experts alike. Grasp in an instant why Pythagoras's theorem must be correct. Follow the ancient Chinese proof of the volume formula for the frustrating frustum, and Archimedes' method for finding the volume of a sphere. Discover the secrets of pi and why, contrary to popular belief, squaring the circle really is possible. Study the subtle art of mathematical domino tumbling, and find out how slicing cones helped save a city and put a man on the moon.
Publisher: Bloomsbury Publishing USA
ISBN: 0802714315
Category : Mathematics
Languages : en
Pages : 65
Book Description
Q.E.D. presents some of the most famous mathematical proofs in a charming book that will appeal to nonmathematicians and math experts alike. Grasp in an instant why Pythagoras's theorem must be correct. Follow the ancient Chinese proof of the volume formula for the frustrating frustum, and Archimedes' method for finding the volume of a sphere. Discover the secrets of pi and why, contrary to popular belief, squaring the circle really is possible. Study the subtle art of mathematical domino tumbling, and find out how slicing cones helped save a city and put a man on the moon.
Proofs Without Words
Author: Roger B. Nelsen
Publisher: MAA
ISBN: 9780883857007
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 166
Book Description
Publisher: MAA
ISBN: 9780883857007
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 166
Book Description
Proofs that Really Count
Author: Arthur T. Benjamin
Publisher: American Mathematical Society
ISBN: 1470472597
Category : Mathematics
Languages : en
Pages : 210
Book Description
Mathematics is the science of patterns, and mathematicians attempt to understand these patterns and discover new ones using a variety of tools. In Proofs That Really Count, award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. The book emphasizes numbers that are often not thought of as numbers that count: Fibonacci Numbers, Lucas Numbers, Continued Fractions, and Harmonic Numbers, to name a few. Numerous hints and references are given for all chapter exercises and many chapters end with a list of identities in need of combinatorial proof. The extensive appendix of identities will be a valuable resource. This book should appeal to readers of all levels, from high school math students to professional mathematicians.
Publisher: American Mathematical Society
ISBN: 1470472597
Category : Mathematics
Languages : en
Pages : 210
Book Description
Mathematics is the science of patterns, and mathematicians attempt to understand these patterns and discover new ones using a variety of tools. In Proofs That Really Count, award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. The book emphasizes numbers that are often not thought of as numbers that count: Fibonacci Numbers, Lucas Numbers, Continued Fractions, and Harmonic Numbers, to name a few. Numerous hints and references are given for all chapter exercises and many chapters end with a list of identities in need of combinatorial proof. The extensive appendix of identities will be a valuable resource. This book should appeal to readers of all levels, from high school math students to professional mathematicians.
History of the English Language and Literature
Author: Bierbaum
Publisher:
ISBN:
Category :
Languages : en
Pages : 282
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 282
Book Description
History of the English language and literature. 2nd, student's ed
Author: Friedrich Julius Bierbaum
Publisher:
ISBN:
Category :
Languages : en
Pages : 342
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 342
Book Description
History of the English Language and Literature
Author: Friedrich Julius Bierbaum
Publisher:
ISBN:
Category : English language
Languages : en
Pages : 344
Book Description
Publisher:
ISBN:
Category : English language
Languages : en
Pages : 344
Book Description
Scotch Novel Reading; Or, Modern Quackery. A Novel Really Founded on Facts ...
Author: Cockney
Publisher:
ISBN:
Category :
Languages : en
Pages : 744
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 744
Book Description
An Autobiography, 1834-1858, and a Memoir by His Wife, 1858-1894
Author: Philip Gilbert Hamerton
Publisher:
ISBN:
Category :
Languages : en
Pages : 836
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 836
Book Description