Author: Vicky W. Wong
Publisher:
ISBN:
Category :
Languages : en
Pages : 138
Book Description
Characterizing the Parallel Performance and Soft Error Resilience of Probabilistic Inference Algorithms
Author: Vicky W. Wong
Publisher:
ISBN:
Category :
Languages : en
Pages : 138
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 138
Book Description
Probability and Computing
Author: Michael Mitzenmacher
Publisher: Cambridge University Press
ISBN: 9780521835404
Category : Computers
Languages : en
Pages : 372
Book Description
Randomization and probabilistic techniques play an important role in modern computer science, with applications ranging from combinatorial optimization and machine learning to communication networks and secure protocols. This 2005 textbook is designed to accompany a one- or two-semester course for advanced undergraduates or beginning graduate students in computer science and applied mathematics. It gives an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses. It assumes only an elementary background in discrete mathematics and gives a rigorous yet accessible treatment of the material, with numerous examples and applications. The first half of the book covers core material, including random sampling, expectations, Markov's inequality, Chevyshev's inequality, Chernoff bounds, the probabilistic method and Markov chains. The second half covers more advanced topics such as continuous probability, applications of limited independence, entropy, Markov chain Monte Carlo methods and balanced allocations. With its comprehensive selection of topics, along with many examples and exercises, this book is an indispensable teaching tool.
Publisher: Cambridge University Press
ISBN: 9780521835404
Category : Computers
Languages : en
Pages : 372
Book Description
Randomization and probabilistic techniques play an important role in modern computer science, with applications ranging from combinatorial optimization and machine learning to communication networks and secure protocols. This 2005 textbook is designed to accompany a one- or two-semester course for advanced undergraduates or beginning graduate students in computer science and applied mathematics. It gives an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses. It assumes only an elementary background in discrete mathematics and gives a rigorous yet accessible treatment of the material, with numerous examples and applications. The first half of the book covers core material, including random sampling, expectations, Markov's inequality, Chevyshev's inequality, Chernoff bounds, the probabilistic method and Markov chains. The second half covers more advanced topics such as continuous probability, applications of limited independence, entropy, Markov chain Monte Carlo methods and balanced allocations. With its comprehensive selection of topics, along with many examples and exercises, this book is an indispensable teaching tool.
Robotic Computing on FPGAs
Author: Shaoshan Liu
Publisher: Morgan & Claypool Publishers
ISBN: 1636391664
Category : Computers
Languages : en
Pages : 220
Book Description
This book provides a thorough overview of the state-of-the-art field-programmable gate array (FPGA)-based robotic computing accelerator designs and summarizes their adopted optimized techniques. This book consists of ten chapters, delving into the details of how FPGAs have been utilized in robotic perception, localization, planning, and multi-robot collaboration tasks. In addition to individual robotic tasks, this book provides detailed descriptions of how FPGAs have been used in robotic products, including commercial autonomous vehicles and space exploration robots.
Publisher: Morgan & Claypool Publishers
ISBN: 1636391664
Category : Computers
Languages : en
Pages : 220
Book Description
This book provides a thorough overview of the state-of-the-art field-programmable gate array (FPGA)-based robotic computing accelerator designs and summarizes their adopted optimized techniques. This book consists of ten chapters, delving into the details of how FPGAs have been utilized in robotic perception, localization, planning, and multi-robot collaboration tasks. In addition to individual robotic tasks, this book provides detailed descriptions of how FPGAs have been used in robotic products, including commercial autonomous vehicles and space exploration robots.
Approximate Computing
Author: Weiqiang Liu
Publisher: Springer Nature
ISBN: 3030983471
Category : Technology & Engineering
Languages : en
Pages : 607
Book Description
This book explores the technological developments at various levels of abstraction, of the new paradigm of approximate computing. The authors describe in a single-source the state-of-the-art, covering the entire spectrum of research activities in approximate computing, bridging device, circuit, architecture, and system levels. Content includes tutorials, reviews and surveys of current theoretical/experimental results, design methodologies and applications developed in approximate computing for a wide scope of readership and specialists. Serves as a single-source reference to state-of-the-art of approximate computing; Covers broad range of topics, from circuits to applications; Includes contributions by leading researchers, from academia and industry.
Publisher: Springer Nature
ISBN: 3030983471
Category : Technology & Engineering
Languages : en
Pages : 607
Book Description
This book explores the technological developments at various levels of abstraction, of the new paradigm of approximate computing. The authors describe in a single-source the state-of-the-art, covering the entire spectrum of research activities in approximate computing, bridging device, circuit, architecture, and system levels. Content includes tutorials, reviews and surveys of current theoretical/experimental results, design methodologies and applications developed in approximate computing for a wide scope of readership and specialists. Serves as a single-source reference to state-of-the-art of approximate computing; Covers broad range of topics, from circuits to applications; Includes contributions by leading researchers, from academia and industry.
Patterns, Predictions, and Actions: Foundations of Machine Learning
Author: Moritz Hardt
Publisher: Princeton University Press
ISBN: 0691233721
Category : Computers
Languages : en
Pages : 321
Book Description
An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impacts Patterns, Predictions, and Actions introduces graduate students to the essentials of machine learning while offering invaluable perspective on its history and social implications. Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions. Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actions Pays special attention to societal impacts and fairness in decision making Traces the development of machine learning from its origins to today Features a novel chapter on machine learning benchmarks and datasets Invites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebra An essential textbook for students and a guide for researchers
Publisher: Princeton University Press
ISBN: 0691233721
Category : Computers
Languages : en
Pages : 321
Book Description
An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impacts Patterns, Predictions, and Actions introduces graduate students to the essentials of machine learning while offering invaluable perspective on its history and social implications. Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions. Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actions Pays special attention to societal impacts and fairness in decision making Traces the development of machine learning from its origins to today Features a novel chapter on machine learning benchmarks and datasets Invites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebra An essential textbook for students and a guide for researchers
TinyML
Author: Pete Warden
Publisher: O'Reilly Media
ISBN: 1492052019
Category : Computers
Languages : en
Pages : 504
Book Description
Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size
Publisher: O'Reilly Media
ISBN: 1492052019
Category : Computers
Languages : en
Pages : 504
Book Description
Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size
Parallel Agile – faster delivery, fewer defects, lower cost
Author: Doug Rosenberg
Publisher: Springer Nature
ISBN: 3030307018
Category : Computers
Languages : en
Pages : 238
Book Description
From the beginning of software time, people have wondered why it isn’t possible to accelerate software projects by simply adding staff. This is sometimes known as the “nine women can’t make a baby in one month” problem. The most famous treatise declaring this to be impossible is Fred Brooks’ 1975 book The Mythical Man-Month, in which he declares that “adding more programmers to a late software project makes it later,” and indeed this has proven largely true over the decades. Aided by a domain-driven code generator that quickly creates database and API code, Parallel Agile (PA) achieves significant schedule compression using parallelism: as many developers as necessary can independently and concurrently develop the scenarios from initial prototype through production code. Projects can scale by elastic staffing, rather than by stretching schedules for larger development efforts. Schedule compression with a large team of developers working in parallel is analogous to hardware acceleration of compute problems using parallel CPUs. PA has some similarities with and differences from other Agile approaches. Like most Agile methods, PA "gets to code early" and uses feedback from executable software to drive requirements and design. PA uses technical prototyping as a risk-mitigation strategy, to help sanity-check requirements for feasibility, and to evaluate different technical architectures and technologies. Unlike many Agile methods, PA does not support "design by refactoring," and it doesn't drive designs from unit tests. Instead, PA uses a minimalist UML-based design approach (Agile/ICONIX) that starts out with a domain model to facilitate communication across the development team, and partitions the system along use case boundaries, which enables parallel development. Parallel Agile is fully compatible with the Incremental Commitment Spiral Model (ICSM), which involves concurrent effort of a systems engineering team, a development team, and a test team working alongside the developers. The authors have been researching and refining the PA process for several years on multiple test projects that have involved over 200 developers. The book’s example project details the design of one of these test projects, a crowdsourced traffic safety system.
Publisher: Springer Nature
ISBN: 3030307018
Category : Computers
Languages : en
Pages : 238
Book Description
From the beginning of software time, people have wondered why it isn’t possible to accelerate software projects by simply adding staff. This is sometimes known as the “nine women can’t make a baby in one month” problem. The most famous treatise declaring this to be impossible is Fred Brooks’ 1975 book The Mythical Man-Month, in which he declares that “adding more programmers to a late software project makes it later,” and indeed this has proven largely true over the decades. Aided by a domain-driven code generator that quickly creates database and API code, Parallel Agile (PA) achieves significant schedule compression using parallelism: as many developers as necessary can independently and concurrently develop the scenarios from initial prototype through production code. Projects can scale by elastic staffing, rather than by stretching schedules for larger development efforts. Schedule compression with a large team of developers working in parallel is analogous to hardware acceleration of compute problems using parallel CPUs. PA has some similarities with and differences from other Agile approaches. Like most Agile methods, PA "gets to code early" and uses feedback from executable software to drive requirements and design. PA uses technical prototyping as a risk-mitigation strategy, to help sanity-check requirements for feasibility, and to evaluate different technical architectures and technologies. Unlike many Agile methods, PA does not support "design by refactoring," and it doesn't drive designs from unit tests. Instead, PA uses a minimalist UML-based design approach (Agile/ICONIX) that starts out with a domain model to facilitate communication across the development team, and partitions the system along use case boundaries, which enables parallel development. Parallel Agile is fully compatible with the Incremental Commitment Spiral Model (ICSM), which involves concurrent effort of a systems engineering team, a development team, and a test team working alongside the developers. The authors have been researching and refining the PA process for several years on multiple test projects that have involved over 200 developers. The book’s example project details the design of one of these test projects, a crowdsourced traffic safety system.
Transforming the Workforce for Children Birth Through Age 8
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309324882
Category : Social Science
Languages : en
Pages : 587
Book Description
Children are already learning at birth, and they develop and learn at a rapid pace in their early years. This provides a critical foundation for lifelong progress, and the adults who provide for the care and the education of young children bear a great responsibility for their health, development, and learning. Despite the fact that they share the same objective - to nurture young children and secure their future success - the various practitioners who contribute to the care and the education of children from birth through age 8 are not acknowledged as a workforce unified by the common knowledge and competencies needed to do their jobs well. Transforming the Workforce for Children Birth Through Age 8 explores the science of child development, particularly looking at implications for the professionals who work with children. This report examines the current capacities and practices of the workforce, the settings in which they work, the policies and infrastructure that set qualifications and provide professional learning, and the government agencies and other funders who support and oversee these systems. This book then makes recommendations to improve the quality of professional practice and the practice environment for care and education professionals. These detailed recommendations create a blueprint for action that builds on a unifying foundation of child development and early learning, shared knowledge and competencies for care and education professionals, and principles for effective professional learning. Young children thrive and learn best when they have secure, positive relationships with adults who are knowledgeable about how to support their development and learning and are responsive to their individual progress. Transforming the Workforce for Children Birth Through Age 8 offers guidance on system changes to improve the quality of professional practice, specific actions to improve professional learning systems and workforce development, and research to continue to build the knowledge base in ways that will directly advance and inform future actions. The recommendations of this book provide an opportunity to improve the quality of the care and the education that children receive, and ultimately improve outcomes for children.
Publisher: National Academies Press
ISBN: 0309324882
Category : Social Science
Languages : en
Pages : 587
Book Description
Children are already learning at birth, and they develop and learn at a rapid pace in their early years. This provides a critical foundation for lifelong progress, and the adults who provide for the care and the education of young children bear a great responsibility for their health, development, and learning. Despite the fact that they share the same objective - to nurture young children and secure their future success - the various practitioners who contribute to the care and the education of children from birth through age 8 are not acknowledged as a workforce unified by the common knowledge and competencies needed to do their jobs well. Transforming the Workforce for Children Birth Through Age 8 explores the science of child development, particularly looking at implications for the professionals who work with children. This report examines the current capacities and practices of the workforce, the settings in which they work, the policies and infrastructure that set qualifications and provide professional learning, and the government agencies and other funders who support and oversee these systems. This book then makes recommendations to improve the quality of professional practice and the practice environment for care and education professionals. These detailed recommendations create a blueprint for action that builds on a unifying foundation of child development and early learning, shared knowledge and competencies for care and education professionals, and principles for effective professional learning. Young children thrive and learn best when they have secure, positive relationships with adults who are knowledgeable about how to support their development and learning and are responsive to their individual progress. Transforming the Workforce for Children Birth Through Age 8 offers guidance on system changes to improve the quality of professional practice, specific actions to improve professional learning systems and workforce development, and research to continue to build the knowledge base in ways that will directly advance and inform future actions. The recommendations of this book provide an opportunity to improve the quality of the care and the education that children receive, and ultimately improve outcomes for children.
Autonomous Horizons
Author: Greg Zacharias
Publisher: Independently Published
ISBN: 9781092834346
Category :
Languages : en
Pages : 420
Book Description
Dr. Greg Zacharias, former Chief Scientist of the United States Air Force (2015-18), explores next steps in autonomous systems (AS) development, fielding, and training. Rapid advances in AS development and artificial intelligence (AI) research will change how we think about machines, whether they are individual vehicle platforms or networked enterprises. The payoff will be considerable, affording the US military significant protection for aviators, greater effectiveness in employment, and unlimited opportunities for novel and disruptive concepts of operations. Autonomous Horizons: The Way Forward identifies issues and makes recommendations for the Air Force to take full advantage of this transformational technology.
Publisher: Independently Published
ISBN: 9781092834346
Category :
Languages : en
Pages : 420
Book Description
Dr. Greg Zacharias, former Chief Scientist of the United States Air Force (2015-18), explores next steps in autonomous systems (AS) development, fielding, and training. Rapid advances in AS development and artificial intelligence (AI) research will change how we think about machines, whether they are individual vehicle platforms or networked enterprises. The payoff will be considerable, affording the US military significant protection for aviators, greater effectiveness in employment, and unlimited opportunities for novel and disruptive concepts of operations. Autonomous Horizons: The Way Forward identifies issues and makes recommendations for the Air Force to take full advantage of this transformational technology.
Perturbations, Optimization, and Statistics
Author: Tamir Hazan
Publisher: MIT Press
ISBN: 0262337940
Category : Computers
Languages : en
Pages : 412
Book Description
A description of perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees. In nearly all machine learning, decisions must be made given current knowledge. Surprisingly, making what is believed to be the best decision is not always the best strategy, even when learning in a supervised learning setting. An emerging body of work on learning under different rules applies perturbations to decision and learning procedures. These methods provide simple and highly efficient learning rules with improved theoretical guarantees. This book describes perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees, offering readers a state-of-the-art overview. Chapters address recent modeling ideas that have arisen within the perturbations framework, including Perturb & MAP, herding, and the use of neural networks to map generic noise to distribution over highly structured data. They describe new learning procedures for perturbation models, including an improved EM algorithm and a learning algorithm that aims to match moments of model samples to moments of data. They discuss understanding the relation of perturbation models to their traditional counterparts, with one chapter showing that the perturbations viewpoint can lead to new algorithms in the traditional setting. And they consider perturbation-based regularization in neural networks, offering a more complete understanding of dropout and studying perturbations in the context of deep neural networks.
Publisher: MIT Press
ISBN: 0262337940
Category : Computers
Languages : en
Pages : 412
Book Description
A description of perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees. In nearly all machine learning, decisions must be made given current knowledge. Surprisingly, making what is believed to be the best decision is not always the best strategy, even when learning in a supervised learning setting. An emerging body of work on learning under different rules applies perturbations to decision and learning procedures. These methods provide simple and highly efficient learning rules with improved theoretical guarantees. This book describes perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees, offering readers a state-of-the-art overview. Chapters address recent modeling ideas that have arisen within the perturbations framework, including Perturb & MAP, herding, and the use of neural networks to map generic noise to distribution over highly structured data. They describe new learning procedures for perturbation models, including an improved EM algorithm and a learning algorithm that aims to match moments of model samples to moments of data. They discuss understanding the relation of perturbation models to their traditional counterparts, with one chapter showing that the perturbations viewpoint can lead to new algorithms in the traditional setting. And they consider perturbation-based regularization in neural networks, offering a more complete understanding of dropout and studying perturbations in the context of deep neural networks.