Characterization of the Phenotypic and Genomic Diversity in Sorghum: Traits and Genetic Components Involved in the Adaptation to Abiotic Stress Conditions

Characterization of the Phenotypic and Genomic Diversity in Sorghum: Traits and Genetic Components Involved in the Adaptation to Abiotic Stress Conditions PDF Author: Sebastian Parra-Londono
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Characterization of the Phenotype and Genomic Diversity in Sorghum

Characterization of the Phenotype and Genomic Diversity in Sorghum PDF Author: Sebastian Parra-Londono
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The analysis of the genetic and phenotypic diversity of a crop is crucial to characterize the adaptability of the species to environmental stress conditions. Combining large sets of morphological and genomic data, it is possible to elucidate the genetic basis of important agricultural traits, which is useful for breeding aims and to develop selection strategies. In this study, a sorghum diversity panel, was grown in optimal and abiotic stress conditions. High-throughput phenotyping methodologies were used to assess plant root system architecture, emergence and survival rate.eng

Quantitative Genomic Analysis of Agroclimatic Traits in Sorghum

Quantitative Genomic Analysis of Agroclimatic Traits in Sorghum PDF Author: Olalere Marcus Olatoye
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Climate change has been anticipated to affect agriculture, with most the profound effect in regions where low input agriculture is being practiced. Understanding of how plants evolved in adaptation to diverse climatic conditions in the presence of local stressors (biotic and abiotic) can be beneficial for improved crop adaptation and yield to ensure food security. Great genetic diversity exists for agroclimatic adaptation in sorghum (Sorghum bicolor L. Moench) but much of it has not been characterized. Thus, limiting its utilization in crop improvement. The application of next-generation sequencing has opened the plant genome for analysis to identify patterns of genome-wide nucleotide variations underlying agroclimatic adaptation. To understand the genetic basis of adaptive traits in sorghum, the genetic architecture of sorghum inflorescence traits was characterized in the first study. Phenotypic data were obtained from multi-environment experiments and used to perform joint linkage and genome-wide association mapping. Mapping results identified previously mapped and novel genetic loci underlying inflorescence morphology in sorghum. Inflorescence traits were found to be under the control of a few large and many moderate and minor effect loci. To demonstrate how our understanding of the genetic basis of adaptive traits can facilitate genomic enabled breeding, genomic prediction analysis was performed with results showing high prediction accuracies for inflorescence traits. In the second study, the sorghum-nested association mapping (NAM) population was used to characterize the genetic architecture of leaf erectness, leaf width, and stem diameter. About 2200 recombinant inbred lines were phenotyped in multiple environments. The obtained phenotypic data was used to perform joint linkage mapping using ~93,000 markers. The proportion of phenotypic variation explained by QTL and their allele frequencies were estimated. Common and moderate effects QTL were found to underlie marker-trait associations. Furthermore, identified QTL co-localized with genes involved in both vegetative and inflorescence development. Our results provide insights into the genetic basis of leaf erectness and stem diameter in sorghum. The identified QTL will also facilitate the development of genomic-enable breeding tools for crop improvement and molecular characterization of the underlying genes Finally, in a third study, 607 Nigerian accessions were genotyped and the resulting genomic data [about 190,000 single nucleotide polymorphisms (SNPs)] was used for downstream analysis. Genome-wide scans of selection and genome-wide association studies (GWAS) were performed and alongside estimates of levels of genetic differentiation and genetic diversity. Results showed that phenotypic variation in the diverse germplasm had been shaped by local adaptation across climatic gradient and can provide plant genetic resources for crop improvement.

Genetics, Genomics and Breeding of Sorghum

Genetics, Genomics and Breeding of Sorghum PDF Author: Yi-Hong Wang
Publisher: CRC Press
ISBN: 1482210096
Category : Science
Languages : en
Pages : 366

Get Book Here

Book Description
Sorghum is one of the hardiest crop plants in modern agriculture and also one of the most versatile. Its seeds provide calorie for food and feed, stalks for building and industrial materials and its juice for syrup. This book provides an in-depth review of the cutting-edge knowledge in sorghum genetics and its applications in sorghum breeding. Each

Sorghum Molecular Breeding

Sorghum Molecular Breeding PDF Author: R. Madhusudhana
Publisher: Springer
ISBN: 8132224221
Category : Technology & Engineering
Languages : en
Pages : 231

Get Book Here

Book Description
This book provides an up-to-date overview of international research work on sorghum. Its comprehensive coverage of our current understanding of transgenic development in sorghum and the strategies that are being applied in molecular breeding make this book unique. Important areas such as genetic diversity, QTL mapping, heterosis prediction, genomic and bioinformatics resources, post-genome sequencing developments, molecular markers development using bioinformatics tools, genetic transformation and transgenic research are also addressed. The availability of the genome sequence along with other recent developments in sequencing and genotyping technologies has resulted in considerable advances in the area of sorghum genomics. These in turn have led to the generation of a large number of DNA-based markers and resulted in the identification and fine mapping of QTL associated with grain yield, its component traits, biotic and abiotic stress tolerance as well as grain quality traits in sorghum. Though a large volume of information has accumulated over the years, especially following the sequencing of the sorghum genome, until now it was not available in a single reference resource. This book fills that gap by documenting advances in the genomics and transgenic research in sorghum and presenting critical reviews and future prospects. “Sorghum Molecular Breeding” is an essential guide for students, researchers and managers who are involved in the area of molecular breeding and transgenic research in sorghum and plant biologists in general.

Genomics-enabled Breeding for Sorghum Improvement in Sub-saharan Africa

Genomics-enabled Breeding for Sorghum Improvement in Sub-saharan Africa PDF Author: Jacques Martin Faye
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Sorghum (Sorghum bicolor, L. Moench) is a staple cereal food crop for millions of people in Sub-Saharan Africa and Asia. However, drought due to low and unpredictable rainfall decreases its productivity in semiarid regions. Understanding the genetic architecture of adaptive traits (drought tolerance, photoperiodic flowering time, and panicle architecture) of sorghum germplasm from breeding programs across West Africa could contribute to efficient molecular breeding. Breeding priorities in West African sorghum improvement programs seek to develop drought-adapted varieties with yield advantages, early and moderate maturity. However, field phenotyping for adaptation in early generations is difficult and there is limited technology to rapidly develop better-adapted varieties. This study aimed to dissect the genetic architecture of adaptive traits to develop high-throughput breeder-friendly markers for rapid introgression of adaptive alleles from donor to elites lines. In chapter 1, I describe the sorghum breeding programs in Senegal, the agronomic importance of sorghum types, and genomic approaches for crop improvement in semiarid regions. In chapter 2, I characterize 213,916 single nucleotide polymorphisms (SNPs) across 421 Senegalese sorghum accessions from the USDA-Germplasm Resources Information Network (GRIN) to identify genomic signatures of local adaptation. This study provided insights into the factors shaping the genetic diversity and the molecular systems underlying local adaptation to water scarcity in sorghum, a staple food security crop in Senegal. In chapter 3, I characterize 159,101 SNPs across 756 accessions of the West African sorghum association panel (WASAP) assembled from breeding programs of Senegal, Niger, Mali, and Togo. The genetic diversity structured by botanical types and subpopulations within botanical types across countries and large-effect quantitative trait loci (QTL) for photoperiodic flowering indicate an oligogenic architecture of flowering time in West African sorghum. In chapter 4, I use genome-wide SNP variation from chapter 3 and phenotypic data from multiple managed water stress environments to identify genomic regions associated with drought response. Significantly positive pleiotropic associations contributed to high phenotypic variance and colocalized with known stay-green (Stg) QTLs, suggesting the existence of Stg alleles in West African sorghum. Finally, in chapter 5, I summarize the expected steps to establish genomics-enabled breeding for sorghum improvement in West Africa. The genomic resources developed in this research have allowed for the dissection of the genetic architecture of adaptive traits. The SNPs associated with large-effect QTLs can be converted into high-throughput breeder-friendly markers for use in marker-assisted selection. These resources combined with discoveries from the global scientific community can be used to accelerate and facilitate the development of locally adapted varieties to meet global food demand in semiarid regions of Sub-Saharan Africa.

Broadening the Genetic Base of Grain Cereals

Broadening the Genetic Base of Grain Cereals PDF Author: Mohar Singh
Publisher: Springer
ISBN: 8132236130
Category : Technology & Engineering
Languages : en
Pages : 282

Get Book Here

Book Description
This book offers comprehensive coverage of important grain cereals including their origin and distribution, crop gene pool, level of diversity, production constraints, traits of importance for genetic base widening, crop improvement methodologies, genome mapping, genomics for breeding, and future strategies. The chapters, contributed by eminent crop researchers from around the world, provide rare insights into the crop-specific constraints and prospects drawing from their substantial experience. As such, the book offers an essential source of information for grain cereals scientists, teachers, students, policy planners and developmental experts alike. Grain cereals, which comprise rice, wheat, maize, barley, oats, sorghum and millets, are members of the grass family. These crops are vital to human nutrition, thanks to their roles as staple food crops in different parts of the globe. Some of them are rich sources of carbohydrates, which provide energy, while others are important sources of minerals, vitamins and proteins, in addition to their medicinal properties. In most cereals, the existing variability among elite germplasm has been exploited to attain a desirable level of productivity. However, to make further breakthroughs in enhancing yield and improving stability in future crop cultivars, new sources of genes/alleles need to be identified in wild/weedy species and incorporated into the cultivated varieties. Though there have been many publications on various aspects of grain cereal improvement in the recent past, to date this essential information has remained scattered among different periodicals.

Characterization of Grain Sorghum for Physiological and Yield Traits Associated with Drought Tolerance

Characterization of Grain Sorghum for Physiological and Yield Traits Associated with Drought Tolerance PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Grain sorghum (Sorghum bicolor L. Moench) is the fourth most important cereal crop grown throughout the semi-arid regions of the world. It is a staple food crop in Africa and Asia, while it is an important feed crop in the United States (US). More recently it is increasingly becoming important as a potential bioenergy feedstock crop around the world. The state of Kansas is the largest producer of grain sorghum in the US and contributes 40% of the total production. Drought is one of the major environmental factors limiting sorghum production in the semi-arid regions of the US, Asia and Africa. It is estimated that global crop losses due to drought stress exceed $10 billion annually. In crop production, drought stress can be classified into pre- or post-flowering. Even though the world collections of sorghum contain over 35,000 accessions, the genetic base currently used in breeding programs is very small (about 3%). Thus, it is important to identify diverse breeding lines for crop improvement. The diversity (association) panel consisting of 300 sorghum lines from all over the world was assembled for trait evaluation and association mapping. In this research these lines were grouped into the five major races (Figure 1) and 10 intermediate races of sorghum. The objectives of the research are to: (i) quantify the performance of the diversity panel under field conditions in Kansas, (ii) identify critical physiological traits affected by drought at both pre- and post-flowering stages of sorghum development, (iii) identify the most sensitive stage to drought stress during the reproductive phase of sorghum development and, (iv) test the feasibility of using a chlorophyll fluorescence assay (CVA) as a tool for identifying stay-green lines in grain sorghum during early stages of crop development. Field experiments were conducted in 2006 and 2007 in two locations in Kansas (Manhattan and Hays) under rain fed and irrigated conditions for the association panel. Objectives (iii) and (iv) were achieved with controlled environment experiments conducted in the greenhouse at the agronomy department, Kansas State University in 2006 and 2007. Results showed that there was large genetic variability among and within different races in the diversity panel for growth, physiological traits and yield components. Some genotypes showed yield stability across the different environments that were investigated. Drought significantly decreased seed number and harvest index across genotypes and races. In grain sorghum the period prior to flowering (panicle initiation) was the most sensitive stage to drought stress, in terms of its effect on seed-set, during reproductive development. A cell viability assay showed that there were significant differences in the loss of cell viability between leaf sample of stay green and non-stay green genotypes when leaf samples are collected in the morning and subjected to high respiratory demand. Therefore the chlorophyll fluorescence assay has potential as a tool for stay green trait screening at early stages of growth in grain sorghum.

Genomics-enabled Breeding for Sorghum in West Africa

Genomics-enabled Breeding for Sorghum in West Africa PDF Author: Fanna Maina Assane Mamadou
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In semi-arid regions, staple crop productivity is affected by multiple environmental, biological and socio-economic factors threatening food security. Sorghum (Sorghum bicolor) is adapted to semi-arid and sub-humid zones of West Africa (WA). This crop is cultivated over large areas, corresponding to variable and diversified local contexts. The genetic basis of local adaptation and farmer preferences and their applications in breeding need further studies. Recent genotyping methods have provided access to high-density markers and their applications in breeding. In this thesis, genomic resources of WA germplasm were developed using the genotyping-by-sequencing method (GBS) to understand the genetic diversity and to identify quantitative trait loci (QTLs) associated with yield components under pre-flowering water deficit. Evidence of local adaptation in genomic regions linked to flowering time in sub-humid zones and balancing selection grain pigmentation were found. Phenotyping of the WA sorghum association panel (WASAP) was conducted under experimental water-deficit treatments. Significant variations of yield components were observed suggesting local adaptation and drought tolerance in the WASAP. Genome-wide association studies identified novel QTLs controlling vegetative biomass and grain weight under water deficit treatment. QTLs colocalizing with known genes in various traits were also identified. Furthermore, these genomic resources were used to develop diagnostic markers for resistance to Striga hermonthica, a weed parasite of grass crops, in which resistance is known to be associated with a deletion of a few genes. Using GBS data, single nucleotide polymorphisms in linkage disequilibrium with the deletion to generate breeder-friendly markers were selected. Analyses identified eight SNPs, converted to breeder-friendly markers and tested in biparental populations and diverse germplasm using outsourced genotyping. The findings provide genetic resources to the scientific community and could facilitate genomics-enabled breeding of sorghum in sub-Saharan Africa.

Multiple abiotic stresses: Molecular, physiological, and genetic responses and adaptations in cereals

Multiple abiotic stresses: Molecular, physiological, and genetic responses and adaptations in cereals PDF Author: Sindhu Sareen
Publisher: Frontiers Media SA
ISBN: 2832518311
Category : Science
Languages : en
Pages : 170

Get Book Here

Book Description