Characterization and Design Mechanics for Fiber-reinforced Metals

Characterization and Design Mechanics for Fiber-reinforced Metals PDF Author: Christos C. Chamis
Publisher:
ISBN:
Category : Fibrous composites
Languages : en
Pages : 52

Get Book Here

Book Description

Characterization and Design Mechanics for Fiber-reinforced Metals

Characterization and Design Mechanics for Fiber-reinforced Metals PDF Author: Christos C. Chamis
Publisher:
ISBN:
Category : Fibrous composites
Languages : en
Pages : 52

Get Book Here

Book Description


NASA Technical Note

NASA Technical Note PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 456

Get Book Here

Book Description


NASA Technical Paper

NASA Technical Paper PDF Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 84

Get Book Here

Book Description


Fiber-reinforced Composites

Fiber-reinforced Composites PDF Author: P. K. Mallick
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 494

Get Book Here

Book Description


Analysis and Performance of Fiber Composites

Analysis and Performance of Fiber Composites PDF Author: Bhagwan D. Agarwal
Publisher: John Wiley & Sons
ISBN:
Category : Technology & Engineering
Languages : ja
Pages : 376

Get Book Here

Book Description


Composite Mechanics

Composite Mechanics PDF Author: Andreas Öchsner
Publisher: Springer Nature
ISBN: 3031323904
Category : Science
Languages : en
Pages : 214

Get Book Here

Book Description
This book in the advanced structured materials series provides first an introduction to the mircomechanics of fiber-reinforced laminae, which deals with the prediction of the macroscopic mechanical lamina properties based on the mechanical properties of the constituents, i.e., fibers and matrix. Composite materials, especially fiber-reinforced composites, are gaining increasing importance since they can overcome the limits of many structures based on classical metals. Particularly, the combination of a matrix with fibers provides far better properties than the constituents alone. Despite their importance, many engineering degree programs do not treat the mechanical behavior of this class of advanced structured materials in detail, at least on the bachelor’s degree level. Thus, some engineers are not able to thoroughly apply and introduce these modern engineering materials in their design process. The second part of this book provides a systematic and thorough introduction to the classical laminate theory based on the theory for plane elasticity elements and classical (shear-rigid) plate elements. The focus is on unidirectional lamina which can be described based on orthotropic constitutive equations and their composition to layered laminates. In addition to the elastic behavior, failure is investigated based on the maximum stress, maximum strain, Tsai-Hill, and the Tsai-Wu criteria. The introduced classical laminate theory provides a simplified stress analysis, and a subsequent failure analysis, without the solution of the system of coupled differential equations for the unknown displacements in the three coordinate directions. The book concludes with a short introduction to a calculation program, the so-called Composite Laminate Analysis Tool (CLAT), which allows the application of the classical laminate based on a sophisticated Python script.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702

Get Book Here

Book Description


Engineered Interfaces in Fiber Reinforced Composites

Engineered Interfaces in Fiber Reinforced Composites PDF Author: Jang-Kyo Kim
Publisher: Elsevier
ISBN: 0080530974
Category : Technology & Engineering
Languages : en
Pages : 416

Get Book Here

Book Description
The study and application of composite materials are a truly interdisciplinary endeavour that has been enriched by contributions from chemistry, physics, materials science, mechanics and manufacturing engineering. The understanding of the interface (or interphase) in composites is the central point of this interdisciplinary effort. From the early development of composite materials of various nature, the optimization of the interface has been of major importance. While there are many reference books available on composite materials, few of them deal specifically with the science and mechanics of the interface of fiber reinforced composites. Further, many recent advances devoted solely to research in composite interfaces have been scattered in a variety of published literature and have yet to be assembled in a readily accessible form. To this end this book is an attempt to bring together recent developments in the field, both from the materials science and mechanics perspective, in a single convenient volume.The central theme of the book is tailoring the interface properties to optimise the mechanical peformance and structural integrity of composites with enhanced strength/stiffness and fracture toughness (or specific fracture resistance). It deals mainly with interfaces in advanced composites made from high performance fibers, such as glass, carbon, aramid, ultra high modulus polyethylene and some inorganic (e.g. B/W, A12O3, SiC) fibers, and matrix materials encompassing polymers, metals/alloys and ceramics. The book is intended to provide a comprehensive treatment of composite interfaces in such a way that it should be of interest to materials scientists, technologists and practising engineers, as well as graduate students and their supervisors in advanced composites. We hope that this book will also serve as a valuable source of reference to all those involved in the design and research of composite interfaces.The book contains eight chapters of discussions on microstructure-property relationships with underlying fundamental mechanics principles. In Chapter 1, an introduction is given to the nature and definition of interfaces in fiber reinforced composites. Chapter 2 is devoted to the mechanisms of adhesion which are specific to each fiber-matrix system, and the physio-chemical characterization of the interface with regard to the origin of adhesion. The experimental techniques that have been developed to assess the fiber-matrix interface bond quality on a microscopic scale are presented in Chapter 3, along with the techniques of measuring interlaminar/intralaminar strengths and fracture toughness using bulk composite laminates. The applicability and limitations associated with loading geometry and interpretation of test data are compared. Chapter 4 presents comprehensive theoretical analyses based on shear-lag models of the single fiber composite tests, with particular interest being placed on the interface debond process and the nature of the fiber-matrix interfacial bonding. Chapter 5 is devoted to reviewing current techniques of fiber surface treatments which have been devised to improve the bond strength and the fiber-matrix compatibility/stability during the manufacturing processes of composites. The micro-failure mechanisms and their associated theories of fracture toughness of composites are discussed in Chapter 6. The roles of the interface and its effects on the mechanical performance of fiber composites are addressed from several viewpoints. Recent research efforts to augment the transverse and interlaminar fracture toughness by means of controlled interfaces are presented in Chapters 7 and 8.

Design and Manufacture of Fibre-Reinforced Composites

Design and Manufacture of Fibre-Reinforced Composites PDF Author: Wayne Hall
Publisher: Springer Nature
ISBN: 3030788075
Category : Technology & Engineering
Languages : en
Pages : 149

Get Book Here

Book Description
This book presents an introduction to the design and manufacture of fibre-reinforced composites. The mechanical properties of unidirectional composites are considered in a structural design context. The use of woven and random fibres is also addressed. The accuracy of design estimates for unidirectional composites is benchmarked against test data, and the relevance of a factor of safety (FoS) is established. The importance of prototype testing is emphasised. This book illustrates how to make a fibre-reinforced composite. Wet layup, vacuum bagging and prepreg moulding are covered in detail. Some guidance on mould design and construction is also provided. Finally, an introduction to the manufacture of composite tubes is presented. Wherever possible, design and make examples are used to illustrate the content. Tutorial questions and problems are included at the end of each chapter. The reader is encouraged to use these questions and problems to assess their own level of understanding of the content.

Stress Analysis of Fiber-reinforced Composite Materials

Stress Analysis of Fiber-reinforced Composite Materials PDF Author: M. W. Hyer
Publisher: DEStech Publications, Inc
ISBN: 193207886X
Category : Technology & Engineering
Languages : en
Pages : 718

Get Book Here

Book Description
Updated and improved, Stress Analysis of Fiber-Reinforced Composite Materials, Hyer's work remains the definitive introduction to the use of mechanics to understand stresses in composites caused by deformations, loading, and temperature changes. In contrast to a materials science approach, Hyer emphasizes the micromechanics of stress and deformation for composite material analysis. The book provides invaluable analytic tools for students and engineers seeking to understand composite properties and failure limits. A key feature is a series of analytic problems continuing throughout the text, starting from relatively simple problems, which are built up step-by-step with accompanying calculations. The problem series uses the same material properties, so the impact of the elastic and thermal expansion properties for a single-layer of FR material on the stress, strains, elastic properties, thermal expansion and failure stress of cross-ply and angle-ply symmetric and unsymmetric laminates can be evaluated. The book shows how thermally induced stresses and strains due to curing, add to or subtract from those due to applied loads.Another important element, and one unique to this book, is an emphasis on the difference between specifying the applied loads, i.e., force and moment results, often the case in practice, versus specifying strains and curvatures and determining the subsequent stresses and force and moment results. This represents a fundamental distinction in solid mechanics.