Characteristic Classes

Characteristic Classes PDF Author: John Willard Milnor
Publisher: Princeton University Press
ISBN: 9780691081229
Category : Mathematics
Languages : en
Pages : 342

Get Book Here

Book Description
The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.

Characteristic Classes

Characteristic Classes PDF Author: John Willard Milnor
Publisher: Princeton University Press
ISBN: 9780691081229
Category : Mathematics
Languages : en
Pages : 342

Get Book Here

Book Description
The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.

Geometry of Characteristic Classes

Geometry of Characteristic Classes PDF Author: Shigeyuki Morita
Publisher: American Mathematical Soc.
ISBN: 0821821393
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
Characteristic classes are central to the modern study of the topology and geometry of manifolds. They were first introduced in topology, where, for instance, they could be used to define obstructions to the existence of certain fiber bundles. Characteristic classes were later defined (via the Chern-Weil theory) using connections on vector bundles, thus revealing their geometric side. In the late 1960s new theories arose that described still finer structures. Examples of the so-called secondary characteristic classes came from Chern-Simons invariants, Gelfand-Fuks cohomology, and the characteristic classes of flat bundles. The new techniques are particularly useful for the study of fiber bundles whose structure groups are not finite dimensional. The theory of characteristic classes of surface bundles is perhaps the most developed. Here the special geometry of surfaces allows one to connect this theory to the theory of moduli space of Riemann surfaces, i.e., Teichmüller theory. In this book Morita presents an introduction to the modern theories of characteristic classes.

Fibre Bundles

Fibre Bundles PDF Author: D. Husemöller
Publisher: Springer Science & Business Media
ISBN: 1475740085
Category : Mathematics
Languages : en
Pages : 333

Get Book Here

Book Description
The notion of a fibre bundle first arose out of questions posed in the 1930s on the topology and geometry of manifolds. By the year 1950 the defini tion of fibre bundle had been clearly formulated, the homotopy classifica tion of fibre bundles achieved, and the theory of characteristic classes of fibre bundles developed by several mathematicians, Chern, Pontrjagin, Stiefel, and Whitney. Steenrod's book, which appeared in 1950, gave a coherent treatment of the subject up to that time. About 1955 Milnor gave a construction of a universal fibre bundle for any topological group. This construction is also included in Part I along with an elementary proof that the bundle is universal. During the five years from 1950 to 1955, Hirzebruch clarified the notion of characteristic class and used it to prove a general Riemann-Roch theorem for algebraic varieties. This was published in his Ergebnisse Monograph. A systematic development of characteristic classes and their applications to manifolds is given in Part III and is based on the approach of Hirze bruch as modified by Grothendieck.

Curvature and Characteristic Classes

Curvature and Characteristic Classes PDF Author: J.L. Dupont
Publisher: Springer
ISBN: 3540359141
Category : Mathematics
Languages : en
Pages : 185

Get Book Here

Book Description


Differential Geometry

Differential Geometry PDF Author: Loring W. Tu
Publisher: Springer
ISBN: 3319550845
Category : Mathematics
Languages : en
Pages : 358

Get Book Here

Book Description
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Loop Spaces, Characteristic Classes and Geometric Quantization

Loop Spaces, Characteristic Classes and Geometric Quantization PDF Author: Jean-Luc Brylinski
Publisher: Springer Science & Business Media
ISBN: 0817647317
Category : Mathematics
Languages : en
Pages : 318

Get Book Here

Book Description
This book examines the differential geometry of manifolds, loop spaces, line bundles and groupoids, and the relations of this geometry to mathematical physics. Applications presented in the book involve anomaly line bundles on loop spaces and anomaly functionals, central extensions of loop groups, Kähler geometry of the space of knots, and Cheeger--Chern--Simons secondary characteristics classes. It also covers the Dirac monopole and Dirac’s quantization of the electrical charge.

From Calculus to Cohomology

From Calculus to Cohomology PDF Author: Ib H. Madsen
Publisher: Cambridge University Press
ISBN: 9780521589567
Category : Mathematics
Languages : en
Pages : 302

Get Book Here

Book Description
An introductory textbook on cohomology and curvature with emphasis on applications.

Complex Manifolds without Potential Theory

Complex Manifolds without Potential Theory PDF Author: Shiing-shen Chern
Publisher: Springer Science & Business Media
ISBN: 1468493442
Category : Mathematics
Languages : en
Pages : 158

Get Book Here

Book Description
From the reviews of the second edition: "The new methods of complex manifold theory are very useful tools for investigations in algebraic geometry, complex function theory, differential operators and so on. The differential geometrical methods of this theory were developed essentially under the influence of Professor S.-S. Chern's works. The present book is a second edition... It can serve as an introduction to, and a survey of, this theory and is based on the author's lectures held at the University of California and at a summer seminar of the Canadian Mathematical Congress.... The text is illustrated by many examples... The book is warmly recommended to everyone interested in complex differential geometry." #Acta Scientiarum Mathematicarum, 41, 3-4#

Differential Analysis on Complex Manifolds

Differential Analysis on Complex Manifolds PDF Author: Raymond O. Wells
Publisher: Springer Science & Business Media
ISBN: 0387738916
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
A brand new appendix by Oscar Garcia-Prada graces this third edition of a classic work. In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Wells’s superb analysis also gives details of the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths's period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems. Oscar Garcia-Prada’s appendix gives an overview of the developments in the field during the decades since the book appeared.

Complex Geometry

Complex Geometry PDF Author: Daniel Huybrechts
Publisher: Springer Science & Business Media
ISBN: 9783540212904
Category : Computers
Languages : en
Pages : 336

Get Book Here

Book Description
Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)