Catalytic Conversion of Biomass-derived Molecules

Catalytic Conversion of Biomass-derived Molecules PDF Author: Hossein Bayahia
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Catalytic Conversion of Biomass-derived Molecules

Catalytic Conversion of Biomass-derived Molecules PDF Author: Hossein Bayahia
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Catalytic Conversion of Biomass-derived Platform Molecules Over Zeolites

Catalytic Conversion of Biomass-derived Platform Molecules Over Zeolites PDF Author: Ivo Freitas Teixeira
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Catalytic Processes for The Valorisation of Biomass Derived Molecules

Catalytic Processes for The Valorisation of Biomass Derived Molecules PDF Author: Francesco Mauriello
Publisher: MDPI
ISBN: 3039219146
Category : Science
Languages : en
Pages : 114

Get Book Here

Book Description
In the last decades, inedible lignocellulosic biomasses have attracted significant attention for being abundant resources that are not in competition with agricultural land or food production and, therefore, can be used as starting renewable material for the production of a wide variety of platform chemicals. The three main components of lignocellulosic biomasses are cellulose, hemicellulose and lignin, complex biopolymers that can be converted into a pool of platform molecules including sugars, polyols, alchols, ketons, ethers, acids and aromatics. Various technologies have been explored for their one-pot conversion into chemicals, fuels and materials. However, in order to develop new catalytic processes for the selective production of desired products, a complete understanding of the molecular aspects of the basic chemistry and reactivity of biomass derived molecules is still crucial. This Special Issue reports on recent progress and advances in the catalytic valorization of cellulose, hemicellulose and lignin model molecules promoted by novel heterogeneous systems for the production of energy, fuels and chemicals.

Catalytic Conversion of Biomass-derived Compounds Into Specialty Chemicals and Diesel Fuel Precursor Molecules

Catalytic Conversion of Biomass-derived Compounds Into Specialty Chemicals and Diesel Fuel Precursor Molecules PDF Author: Paolo Andres Cuello Penaloza
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Biomass offers a plethora of opportunities to obtain useful and unique products in a sustainable way, be it chemicals with specialty applications, or molecules that can be blended into our everyday fuels, potentially improving their desired properties. In this work, we study two processes involving the conversion of biomass-derived feedstocks into specialty chemicals and diesel fuel precursors using suitable solid catalysts for each application. In Chapters 2 and 3, we delve into the production of hexane-1,2,5,6-tetrol from levoglucosanol, which is ultimately obtained from a cellulose direct derivate, and a potential application as a polymer precursor. In Chapter 2, we obtain kinetic information for the conversion of levoglucosanol into the polyol using a Pt-WOx/TiO2 catalyst at industrially relevant concentrations (10 - 30wt% reactant in water), showing that with this catalyst we can obtain selectively our product of interests, and also preserve over 90% of the reactant stereocenters. We also demonstrate the relative stability of this catalyst compared to what is known in literature, and its regenerability as well. In Chapter 3, we show a potential application for hexane-1,2,5,6-tetrol in the synthesis of tetrol-boronate copolymers when benzenediboronic acids are used. We prove that a facile synthesis is possible at room temperature with various solvents, and demonstrate that the properties of the polymers are impacted by the choice of a solvent, and the diastereomeric excess of the reactant, managing to obtain a first-known case of a chiral polymer when 98% d.e. (S,R)-hexane-1,2,5,6-tetrol is used. In Chapters 4 and 5, we study the selective conversion of ethanol into larger molecules that can be ultimately converted into compounds that can be blended into diesel by different methods when MgAl mixed metal oxide catalysts that have very low loadings of Cu are used. In Chapter 4, we demonstrate that when Cu loadings less than 0.6wt% are used in MgAl catalysts, very high diesel fuel precursor selectivities may be obtained, with the most significant products being larger alcohols and aldehydes, followed by large esters, and relatively minor amounts of ethyl acetate. We proved that changing the properties of the MgAl support does not greatly impact the performance of the catalyst, instead we found that the loading of Cu is the determinant factor in catalyst performance due to Cu acting more as a promoter of MgAl acid-base chemistry than as an actual catalyst for the Guerbet coupling reaction. The presence of Cu in low amounts also enables the selective production of esters with 6 or more carbons over ethyl acetate. The studied catalysts also promoted high product alcohol linearity, and the alcohol selectivity per carbon number fitted the Schultz-Flory distribution, showing that alcohol growth is dictated by chain growth behavior. In Chapter 5, we studied the performance of a single low Cu loading MgAl catalyst at different contact times, performed tests at varying ethanol-to-hydrogen partial pressure ratios, and performed cofeed studied of ethanol with acetaldehyde and ethyl acetate in order to elucidate the reaction network of ethanol oligomerization to larger oxygenates. We found that selectivity to higher alcohols was greater towards alcohols at all conversions, and alcohols exhibit chain-growth at all contact times. We found that ester and ketone selectivity increase with conversion, with their sizes becoming larger with conversion as well. Esters are series products from alcohols and aldehydes. Finally, we demonstrated that higher linear alcohols will be more selective to esters that ethanol, and that branched alcohols feeds may form esters selectively. Finally, in Chapter 6, we cover the conclusions from all the performed studies, and provide an outlook on future research avenues that enable the effective conversion of biomass-derived feedstocks into products of added value using solid catalysts.

Biomass Processing over Gold Catalysts

Biomass Processing over Gold Catalysts PDF Author: Olga A. Simakova
Publisher: Springer Science & Business Media
ISBN: 3319009060
Category : Science
Languages : en
Pages : 54

Get Book Here

Book Description
The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries. In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are presented for all of the reactions mentioned above. This book provides an overview of the recent research results focusing on application of gold catalysts for synthesis of valuable chemicals using renewable feedstocks.

Nanoporous Catalysts for Biomass Conversion

Nanoporous Catalysts for Biomass Conversion PDF Author: Feng-Shou Xiao
Publisher: John Wiley & Sons
ISBN: 1119128080
Category : Science
Languages : en
Pages : 354

Get Book Here

Book Description
A comprehensive introduction to the design, synthesis, characterization, and catalytic properties of nanoporous catalysts for the biomass conversion With the specter of peak oil demand looming on the horizon, and mounting concerns over the environmental impact of greenhouse gas emissions, biomass has taken on a prominent role as a sustainable alternative fuel source. One critical aspect of the biomass challenge is the development of novel catalytic materials for effective and controllable biomass conversion. Edited by two scientists recognized internationally for their pioneering work in the field, this book focuses on nanoporous catalysts, the most promising class of catalytic materials for the conversion of biomass into fuel and other products. Although various catalysts have been used in the conversion of biomass-derived feedstocks, nanoporous catalysts exhibit high catalytic activities and/or unique product selectivities due to their large surface area, open nanopores, and highly dispersed active sites. This book covers an array of nanoporous catalysts currently in use for biomass conversion, including resins, metal oxides, carbons, mesoporous silicates, polydivinylbenzene, and zeolites. The authors summarize the design, synthesis, characterization and catalytic properties of these nanoporous catalysts for biomass conversions, discussing the features of these catalysts and considering future opportunities for developing more efficient catalysts. Topics covered include: Resins for biomass conversion Supported metal oxides/sulfides for biomass oxidation and hydrogenation Nanoporous metal oxides Ordered mesoporous silica-based catalysts Sulfonated carbon catalysts Porous polydivinylbenzene Aluminosilicate zeolites for bio-oil upgrading Rice straw Hydrogenation for sugar conversion Lignin depolymerization Timely, authoritative, and comprehensive, Nanoporous Catalysts for Biomass Conversion is a valuable working resource for academic researchers, industrial scientists and graduate students working in the fields of biomass conversion, catalysis, materials science, green and sustainable chemistry, and chemical/process engineering.

Catalytic Conversion of Biomass-derived Compounds to Fuels and Chemicals

Catalytic Conversion of Biomass-derived Compounds to Fuels and Chemicals PDF Author: Ron Christopher Runnebaum
Publisher:
ISBN: 9781267240736
Category :
Languages : en
Pages :

Get Book Here

Book Description
Among the potential routes for production of fuels and chemicals from lignocellulosic biomass, fast pyrolysis accompanied by or followed by catalytic upgrading offers excellent potential because the number of conversion steps is small and the processing may be cost effective. Lignin-derived bio-oils can be converted into fuels and aromatic chemicals, with a key processing challenge being the removal of oxygen. The literature of bio-oils conversion is largely lacking in fundamental chemistry, which limits the usefulness of the available data for predicting catalyst performance. To determine a quantitative reaction network, we designed and constructed four identical tubular flow reactor systems with flexibility to produce data at high and at low conversions and with ability to identify and quantify even trace products by GC-MS and GC-FID. Higher conversion data are necessary to determine trace products formed in the conversions of the individual reactants and enable reaction networks that are more detailed than any previously published to be elucidated. Low conversion data are required to determine quantitative kinetics of reactions that lead to the most abundant products. These reactor systems also enabled mass balance closures of greater than 95%. Reaction networks were elucidated to account for the reactions of a group of compounds prototypical of lignin and compounds derived from it, incorporating the representative functional groups, such as aromatic rings and ether linkages--the compounds are anisole, 4-methylanisole, and furan. These reactants are converted in the presence of catalysts representative of important catalyst classes, including solid acid (HY zeolite), supported metal (platinum on [gamma]-Al2O3, Pt/[gamma]-Al2O3), and bifunctional (platinum of SiO2-Al2O3, Pt/SiO2-Al2O3) catalysts. The results show that one of the dominant classes of reactions observed with anisole and 4-methylanisole is transalkylation. When the catalyst was HY zeolite, transalkylation was the only kinetically significant reaction class. Hydrogenation, dehydrogenation, hydrogenolysis (C--O bond cleavage reactions that did not remove oxygen from the organic reactant), and hydrodeoxygenation (C--O bond cleavage reactions that removed oxygen from the organic reactant) were also observed in the conversion of each reactant (anisole, 4-methylanisole, and furan) with the supported-platinum catalysts. The data determine quantitative conversions and selectivities of the products that were formed in relatively high yields at conversions

Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II

Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II PDF Author: Marcel Schlaf
Publisher: Springer
ISBN: 981287769X
Category : Technology & Engineering
Languages : en
Pages : 206

Get Book Here

Book Description
Volume II presents the latest advances in catalytic hydrodeoxygenation and other transformations of some cellulosic platform chemicals to high value-added products. It presents the theoretical evaluation of the energetics and catalytic species involved in potential pathways of catalyzed carbohydrate conversion, pathways leading to the formation of humin-based by-products, and thermal pathways in deriving chemicals from lignin pyrolysis and hydrodeoxygenation. Catalytic gasification of biomass under extreme thermal conditions as an extension of pyrolysis is also discussed. Marcel Schlaf, PhD, is a Professor at the Department of Chemistry, University of Guelph, Canada. Z. Conrad Zhang, PhD, is a Professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.

Catalytic Conversion of Biomass-derived Platform Molecules to Distillate-range Fuels

Catalytic Conversion of Biomass-derived Platform Molecules to Distillate-range Fuels PDF Author: Nathaniel Eagan
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Current trends in resource consumption and environmental degradation inspire research into the benign transformation of renewable feedstocks to transportation fuels with lower net greenhouse gas emissions. Growing demands in heavier middle-distillate fuels such as diesel and jet fuel particularly motivate the use of carbon-containing feedstocks such as biomass in order to produce liquid fuels substantially similar to those already essential to our economy. Such fuels still require carbon chains larger than those of the monomeric sugars comprising cellulose and hemicellulose, however, thus carbon-carbon bond forming technologies have an important place in the overall biomass-to-distillate landscape. These technologies can be utilized to upgrade platform molecules easily obtainable from biomass. The research discussed here focuses on the use of sorbitol and ethanol platforms, providing promising new directions for their utilization. Sorbitol conversion to distillate fuels first requires a challenging hydrodeoxygenation step focused on producing mono-functional oxygenates. Here this chemistry was promoted by a Co/TiO2 catalyst at yields (56%) competitive with more costly noble-metal catalysts. FT-ICR-MS provided evidence that oligomeric species produced may also act as intermediates in the process. However, this catalyst suffered from irreversible deactivation via oxygenate-promoted Co leaching and sintering which could not be inhibited by the SMSI-stabilization of the catalyst. Pathways by which ethanol can be converted into middle-distillate fuels were then extensively evaluated by considering the fundamental chemistries which can be exploited and how they can be most effectively combined. These processes involve integrating dehydration, hydrogen transfer, olefin oligomerization, aldol condensation, and ketonization in a variety of ways which can overcome the limitations of any one particular technology. From these analyses, promising research directions are recommended. The subsequent focus here is on the use of Guerbet coupling to directly oligomerize ethanol to distillate-range fuels. Cu-doped AlMgO and AlCaO catalysts were first examined for this purpose, with the importance of operating at elevated pressures to promote selective coupling explained. Selective ethanol oligomerization is still challenging with these catalysts, however, given that alcohol selectivities were limited here to ~55% at 20% conversions, and conversions above 30% were difficult to achieve due to inhibition by products of the reaction (e.g. water). Calcium hydroxyapatite (HAP) was then examined as a more selective catalyst for this transformation, though declining selectivities and reaction rates were observed as conversion increased. However, integration of selective ethanol coupling over HAP with bimolecular dehydration shows promise as a novel method to produce diesel-range ethers from biomass-derived sources. Overall a process was developed which can produce these ethers in addition to jet-range paraffins at theoretical yields above 80%. Lastly kinetic modeling was utilized to better understand the limitations and potential of using Guerbet coupling to oligomerize ethanol to distillate-range alcohols. Inhibition effects by water rationalize the aforementioned declining rates and selectivities observed with increasing conversion. In the absence of these phenomena, however, the production of distillate-range alcohols is limited by the underlying kinetics which resemble step-growth oligomerization with the additional stipulation that branched alcohols cannot couple as nucleophiles. The model discussed here suggests that catalysts which promote the electrophilic action of higher alcohols over that of ethanol are promising for promoting linear alcohol formation that cascades into the distillate-range.

Applications of Layered Double Hydroxides

Applications of Layered Double Hydroxides PDF Author: Rajib Lochan Goswamee
Publisher: Nova Science Publishers
ISBN: 9781685073817
Category : Electronic books
Languages : en
Pages : 407

Get Book Here

Book Description
"Currently, Layered Double Hydroxides (LDH) is a hot area of research on inorganic layered materials. The present book, Applications of Layered Double Hydroxides, edited by Dr. Rjib Lochan Goswamee and Dr. Pinky Saikia, is a collection of articles from various researchers from different parts of the world mainly on structure and property relationships of various types of LDH and their related application prospects. How these application prospects can be related to the most pressing problems of humanity like drug delivery, global warming, green catalysis, electrochemical energy storage and generation etc. are clearly discussed in the articles inside. The book provides a thorough up-to-date review of recent literature on applications of LDH available in the global scientific and technical media. For example, the book lucidly describes the behaviour of LDH nanocarriers in biological fluids, their low cytotoxicity and high levels of cellular internalization, and high drug loading capacity. Similarly, the book examines why hybrid nanocomposites of LDH-MOF are considered promising materials due to their diverse functionality, flexible properties and tailored end-use properties. Likewise, application of LDH in secondary batteries and electro-chemical supercapacitors with a thorough up-to-date review is included in the book. Also, basic research articles on structural properties and measurements of a special class of unique LDH Li-Al-LDHs are included. Editors also have written their own articles on their findings on the prospective application of dispersions of LDH nanocomposites on structured catalysts for green-house gas emission. Overall, the book gives a short glimpse of wonderful opportunities that LDH can provide in solving many global socio-economic problems of today"--