Author: Roland N. Pittman
Publisher: Biota Publishing
ISBN: 1615047212
Category : Medical
Languages : en
Pages : 117
Book Description
This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.
Regulation of Tissue Oxygenation, Second Edition
Author: Roland N. Pittman
Publisher: Biota Publishing
ISBN: 1615047212
Category : Medical
Languages : en
Pages : 117
Book Description
This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.
Publisher: Biota Publishing
ISBN: 1615047212
Category : Medical
Languages : en
Pages : 117
Book Description
This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.
Neural Control of Renal Function
Author: Ulla Kopp
Publisher: Morgan & Claypool Publishers
ISBN: 1615042318
Category : Medical
Languages : en
Pages : 99
Book Description
The kidney is innervated with efferent sympathetic nerve fibers reaching the renal vasculature, the tubules, the juxtaglomerular granular cells, and the renal pelvic wall. The renal sensory nerves are mainly found in the renal pelvic wall. Increases in efferent renal sympathetic nerve activity reduce renal blood flow and urinary sodium excretion by activation of α1-adrenoceptors and increase renin secretion rate by activation of β1-adrenoceptors. In response to normal physiological stimulation, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of sodium and water balance. The renal mechanosensory nerves are activated by stretch of the renal pelvic tissue produced by increases in renal pelvic tissue of a magnitude that may occur during increased urine flow rate. Activation of the sensory nerves elicits an inhibitory renorenal reflex response consisting of decreases in efferent renal sympathetic nerve activity leading to natriuresis. Increasing efferent sympathetic nerve activity increases afferent renal nerve activity which, in turn, decreases efferent renal sympathetic nerve activity by activation of the renorenal reflexes. Thus, activation of the afferent renal nerves buffers changes in efferent renal sympathetic nerve activity in the overall goal of maintaining sodium balance. In pathological conditions of sodium retention, impairment of the inhibitory renorenal reflexes contributes to an inappropriately increased efferent renal sympathetic nerve activity in the presence of sodium retention. In states of renal disease or injury, there is a shift from inhibitory to excitatory reflexes originating in the kidney. Studies in essential hypertensive patients have shown that renal denervation results in long-term reduction in arterial pressure, suggesting an important role for the efferent and afferent renal nerves in hypertension. Table of Contents: Part I: Efferent Renal Sympathetic Nerves / Introduction / Neuroanatomy / Neural Control of Renal Hemodynamics / Neural Control of Renal Tubular Function / Neural Control of Renin Secretion Rate / Part II: Afferent Renal Sensory Nerves / Introduction / Neuroanatomy / Renorenal Reflexes / Mechanisms Involved in the Activation of Afferent Renal Sensory Nerves / Part III: Pathophysiological States / Efferent Renal Sympathetic Nerves / Afferent Renal Sensory Nerves / Conclusions / References
Publisher: Morgan & Claypool Publishers
ISBN: 1615042318
Category : Medical
Languages : en
Pages : 99
Book Description
The kidney is innervated with efferent sympathetic nerve fibers reaching the renal vasculature, the tubules, the juxtaglomerular granular cells, and the renal pelvic wall. The renal sensory nerves are mainly found in the renal pelvic wall. Increases in efferent renal sympathetic nerve activity reduce renal blood flow and urinary sodium excretion by activation of α1-adrenoceptors and increase renin secretion rate by activation of β1-adrenoceptors. In response to normal physiological stimulation, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of sodium and water balance. The renal mechanosensory nerves are activated by stretch of the renal pelvic tissue produced by increases in renal pelvic tissue of a magnitude that may occur during increased urine flow rate. Activation of the sensory nerves elicits an inhibitory renorenal reflex response consisting of decreases in efferent renal sympathetic nerve activity leading to natriuresis. Increasing efferent sympathetic nerve activity increases afferent renal nerve activity which, in turn, decreases efferent renal sympathetic nerve activity by activation of the renorenal reflexes. Thus, activation of the afferent renal nerves buffers changes in efferent renal sympathetic nerve activity in the overall goal of maintaining sodium balance. In pathological conditions of sodium retention, impairment of the inhibitory renorenal reflexes contributes to an inappropriately increased efferent renal sympathetic nerve activity in the presence of sodium retention. In states of renal disease or injury, there is a shift from inhibitory to excitatory reflexes originating in the kidney. Studies in essential hypertensive patients have shown that renal denervation results in long-term reduction in arterial pressure, suggesting an important role for the efferent and afferent renal nerves in hypertension. Table of Contents: Part I: Efferent Renal Sympathetic Nerves / Introduction / Neuroanatomy / Neural Control of Renal Hemodynamics / Neural Control of Renal Tubular Function / Neural Control of Renin Secretion Rate / Part II: Afferent Renal Sensory Nerves / Introduction / Neuroanatomy / Renorenal Reflexes / Mechanisms Involved in the Activation of Afferent Renal Sensory Nerves / Part III: Pathophysiological States / Efferent Renal Sympathetic Nerves / Afferent Renal Sensory Nerves / Conclusions / References
Autonomic Failure
Author: C. J. Mathias
Publisher: Oxford University Press, USA
ISBN: 9780192628510
Category : Medical
Languages : en
Pages : 562
Book Description
This fourth edition of Autonomic Failure (now available in paperback) covers the many recent advances made in our understanding of the autonomic nervous system. There are 20 new chapters and extensive revisions of all other contributions. Autonomic failure, fourth edition makes diagnosis increasingly precise by fully evaluating the underlying anatomical and functional deficits, thereby allowing more effective treatment. This new edition continues to provide practitioners from a variety of fields, including neurology, cardiology, geriatric medicine, diabetology, and internal medicine, with a rational guide to aid in the recognition and management of autonomic disorders. The book starts with an updated classification of autonomic disorders and a history of the autonomic nervous system. The first two sections of the book deal with the fundamental aspects of autonomic structure, function, and integration. There are new chapters dealing with neurobiology, nerve growth factors, genetic mutations, neural and hormonal control of the cerebral circulation, innervation of the lung, and pathophysiological mechanisms causing nausea and vomiting. Advances in the clinical management of autonomic disorders are critically dependent on the bridge made between the basic and applied sciences.
Publisher: Oxford University Press, USA
ISBN: 9780192628510
Category : Medical
Languages : en
Pages : 562
Book Description
This fourth edition of Autonomic Failure (now available in paperback) covers the many recent advances made in our understanding of the autonomic nervous system. There are 20 new chapters and extensive revisions of all other contributions. Autonomic failure, fourth edition makes diagnosis increasingly precise by fully evaluating the underlying anatomical and functional deficits, thereby allowing more effective treatment. This new edition continues to provide practitioners from a variety of fields, including neurology, cardiology, geriatric medicine, diabetology, and internal medicine, with a rational guide to aid in the recognition and management of autonomic disorders. The book starts with an updated classification of autonomic disorders and a history of the autonomic nervous system. The first two sections of the book deal with the fundamental aspects of autonomic structure, function, and integration. There are new chapters dealing with neurobiology, nerve growth factors, genetic mutations, neural and hormonal control of the cerebral circulation, innervation of the lung, and pathophysiological mechanisms causing nausea and vomiting. Advances in the clinical management of autonomic disorders are critically dependent on the bridge made between the basic and applied sciences.
Cardiovascular Regulation
Author: David Jordan
Publisher: Ashgate Publishing
ISBN: 9781855780248
Category : Medical
Languages : en
Pages : 159
Book Description
The Studies in Physiology series provides a concise introduction to developments in complex areas of physiology for a wide audience. Published on behalf of the Physiology Society, Cardiovascular Regulation provides an up-to-date account of our current understanding of the control of the cardiovascular system that is not covered by existing textbooks. Both students and lecturers of cardiovascular and exercise physiology, medicine, dentistry and biomedical sciences will find this book informative and easy to read. Each chapter has numerous summary boxes. 'Essential reading' suggestions provide additional reading for undergraduates and the suggestions for 'Further reading' cover the subject to postgraduate level.
Publisher: Ashgate Publishing
ISBN: 9781855780248
Category : Medical
Languages : en
Pages : 159
Book Description
The Studies in Physiology series provides a concise introduction to developments in complex areas of physiology for a wide audience. Published on behalf of the Physiology Society, Cardiovascular Regulation provides an up-to-date account of our current understanding of the control of the cardiovascular system that is not covered by existing textbooks. Both students and lecturers of cardiovascular and exercise physiology, medicine, dentistry and biomedical sciences will find this book informative and easy to read. Each chapter has numerous summary boxes. 'Essential reading' suggestions provide additional reading for undergraduates and the suggestions for 'Further reading' cover the subject to postgraduate level.
Regulation of Coronary Blood Flow
Author: Michitoshi Inoue
Publisher: Springer Science & Business Media
ISBN: 4431683674
Category : Medical
Languages : en
Pages : 330
Book Description
Research centering on blood flow in the heart continues to hold an important position, especially since a better understanding of the subject may help reduce the incidence of coronary arterial disease and heart attacks. This book summarizes recent advances in the field; it is the product of fruitful cooperation among international scientists who met in Japan in May, 1990 to discuss the regulation of coronary blood flow.
Publisher: Springer Science & Business Media
ISBN: 4431683674
Category : Medical
Languages : en
Pages : 330
Book Description
Research centering on blood flow in the heart continues to hold an important position, especially since a better understanding of the subject may help reduce the incidence of coronary arterial disease and heart attacks. This book summarizes recent advances in the field; it is the product of fruitful cooperation among international scientists who met in Japan in May, 1990 to discuss the regulation of coronary blood flow.
The Cerebral Circulation
Author: Marilyn J. Cipolla
Publisher: Biota Publishing
ISBN: 1615047239
Category : Medical
Languages : en
Pages : 82
Book Description
This e-book will review special features of the cerebral circulation and how they contribute to the physiology of the brain. It describes structural and functional properties of the cerebral circulation that are unique to the brain, an organ with high metabolic demands and the need for tight water and ion homeostasis. Autoregulation is pronounced in the brain, with myogenic, metabolic and neurogenic mechanisms contributing to maintain relatively constant blood flow during both increases and decreases in pressure. In addition, unlike peripheral organs where the majority of vascular resistance resides in small arteries and arterioles, large extracranial and intracranial arteries contribute significantly to vascular resistance in the brain. The prominent role of large arteries in cerebrovascular resistance helps maintain blood flow and protect downstream vessels during changes in perfusion pressure. The cerebral endothelium is also unique in that its barrier properties are in some way more like epithelium than endothelium in the periphery. The cerebral endothelium, known as the blood-brain barrier, has specialized tight junctions that do not allow ions to pass freely and has very low hydraulic conductivity and transcellular transport. This special configuration modifies Starling's forces in the brain microcirculation such that ions retained in the vascular lumen oppose water movement due to hydrostatic pressure. Tight water regulation is necessary in the brain because it has limited capacity for expansion within the skull. Increased intracranial pressure due to vasogenic edema can cause severe neurologic complications and death.
Publisher: Biota Publishing
ISBN: 1615047239
Category : Medical
Languages : en
Pages : 82
Book Description
This e-book will review special features of the cerebral circulation and how they contribute to the physiology of the brain. It describes structural and functional properties of the cerebral circulation that are unique to the brain, an organ with high metabolic demands and the need for tight water and ion homeostasis. Autoregulation is pronounced in the brain, with myogenic, metabolic and neurogenic mechanisms contributing to maintain relatively constant blood flow during both increases and decreases in pressure. In addition, unlike peripheral organs where the majority of vascular resistance resides in small arteries and arterioles, large extracranial and intracranial arteries contribute significantly to vascular resistance in the brain. The prominent role of large arteries in cerebrovascular resistance helps maintain blood flow and protect downstream vessels during changes in perfusion pressure. The cerebral endothelium is also unique in that its barrier properties are in some way more like epithelium than endothelium in the periphery. The cerebral endothelium, known as the blood-brain barrier, has specialized tight junctions that do not allow ions to pass freely and has very low hydraulic conductivity and transcellular transport. This special configuration modifies Starling's forces in the brain microcirculation such that ions retained in the vascular lumen oppose water movement due to hydrostatic pressure. Tight water regulation is necessary in the brain because it has limited capacity for expansion within the skull. Increased intracranial pressure due to vasogenic edema can cause severe neurologic complications and death.
Core Topics in Cardiac Anesthesia
Author: Jonathan H. Mackay
Publisher: Cambridge University Press
ISBN: 9780521196857
Category : Medical
Languages : en
Pages : 0
Book Description
Since the publication of the first edition of Core Topics in Cardiac Anaesthesia, the clinical landscape has undergone significant change. Recent developments include the increased use of electrophysiology, the resurgence of primary percutaneous intervention in acute coronary syndromes, the use of percutaneous devices in patients previously considered inoperable, and the withdrawal of aprotinin. Against this landscape, this invaluable resource has been fully updated. New chapters are dedicated to right heart valves, pulmonary vascular disease, cardiac tumours and cardiac trauma. All other chapters have been updated according to the latest international guidelines. Written and edited by an international author team with a wealth of expertise in all aspects of the perioperative care of cardiac patients, topics are presented in an easy to digest and a readily accessible manner. Core Topics in Cardiac Anaesthesia, Second Edition is essential reading for residents and fellows in anaesthesia and cardiac surgery and clinical perfusionists.
Publisher: Cambridge University Press
ISBN: 9780521196857
Category : Medical
Languages : en
Pages : 0
Book Description
Since the publication of the first edition of Core Topics in Cardiac Anaesthesia, the clinical landscape has undergone significant change. Recent developments include the increased use of electrophysiology, the resurgence of primary percutaneous intervention in acute coronary syndromes, the use of percutaneous devices in patients previously considered inoperable, and the withdrawal of aprotinin. Against this landscape, this invaluable resource has been fully updated. New chapters are dedicated to right heart valves, pulmonary vascular disease, cardiac tumours and cardiac trauma. All other chapters have been updated according to the latest international guidelines. Written and edited by an international author team with a wealth of expertise in all aspects of the perioperative care of cardiac patients, topics are presented in an easy to digest and a readily accessible manner. Core Topics in Cardiac Anaesthesia, Second Edition is essential reading for residents and fellows in anaesthesia and cardiac surgery and clinical perfusionists.
Anatomy and Physiology
Author: J. Gordon Betts
Publisher:
ISBN: 9781947172807
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9781947172807
Category :
Languages : en
Pages : 0
Book Description
Cardiovascular Physiology Neural Control Mechanisms
Author: A. G. B. Kovách
Publisher: Elsevier
ISBN: 1483155617
Category : Medical
Languages : en
Pages : 395
Book Description
Cardiovascular Physiology Neural Control Mechanisms contains the proceedings of the symposia of the 28th International Congress of Physiology held in Budapest between 13 and 19 of July, 1980. Organized into six parts, this book begins with an elucidation of the integrative role of the autonomic nervous system in the regulation of cardiovascular function. Parts II and III explain neural reflex control of the heart and cerebral blood flow regulation. Nervous control of the microcirculation and control of vascular capacitance in man and animals are then discussed. The last part focuses on the reflex control of the circulation in man.
Publisher: Elsevier
ISBN: 1483155617
Category : Medical
Languages : en
Pages : 395
Book Description
Cardiovascular Physiology Neural Control Mechanisms contains the proceedings of the symposia of the 28th International Congress of Physiology held in Budapest between 13 and 19 of July, 1980. Organized into six parts, this book begins with an elucidation of the integrative role of the autonomic nervous system in the regulation of cardiovascular function. Parts II and III explain neural reflex control of the heart and cerebral blood flow regulation. Nervous control of the microcirculation and control of vascular capacitance in man and animals are then discussed. The last part focuses on the reflex control of the circulation in man.
Basic Physiology for Anaesthetists
Author: David Chambers
Publisher: Cambridge University Press
ISBN: 1108463991
Category : Medical
Languages : en
Pages : 469
Book Description
Easily understood, up-to-date and clinically relevant, this book provides junior anaesthetists with an essential physiology resource.
Publisher: Cambridge University Press
ISBN: 1108463991
Category : Medical
Languages : en
Pages : 469
Book Description
Easily understood, up-to-date and clinically relevant, this book provides junior anaesthetists with an essential physiology resource.