Author: Jack Norman Nielsen
Publisher:
ISBN:
Category : Aerodynamic heating
Languages : en
Pages : 92
Book Description
"A calculative method is presented for determining separated, laminar, boundary-layer characteristics from in front of the separation point to the reattachment point under the influence of 'free interaction' between the main flow and the boundary layer. The analysis covers supersonic flow over two-dimensional and axisymmetric configurations with adiabatic or nonadiabatic wall conditions. For nonadiabatic wall conditions, theories based on first-order coupling and second-order coupling between velocity and total temperature profiles were presented. The theory based on first-order coupling was included in a machine calculation program with options for two-dimensional or axisymmetric flow and adiabatic or nonadiabatic wall conditions. Extensive systematic calculations were made to determine the range of possible separated flows over a two-dimensional configuration as a function of separation point location and wall temperatures. Comparison between experiment and theory for separation pressure distributions on two-dimensional or axisymmetric adiabatic configurations shows generally good agreement. Good comparison between experiment and theory is indicated for a moderately-cooled axisymmetric configuration. For a highly-cooled axisymmetric configuration, the prediction of the machine program based on first-order coupling is inadequate, indicating the necessity for a higher-order coupling theory." -- page iii.
Calculation of Laminar Separation with Free Interaction by the Method of Integral Relations
Author: Jack Norman Nielsen
Publisher:
ISBN:
Category : Aerodynamic heating
Languages : en
Pages : 92
Book Description
"A calculative method is presented for determining separated, laminar, boundary-layer characteristics from in front of the separation point to the reattachment point under the influence of 'free interaction' between the main flow and the boundary layer. The analysis covers supersonic flow over two-dimensional and axisymmetric configurations with adiabatic or nonadiabatic wall conditions. For nonadiabatic wall conditions, theories based on first-order coupling and second-order coupling between velocity and total temperature profiles were presented. The theory based on first-order coupling was included in a machine calculation program with options for two-dimensional or axisymmetric flow and adiabatic or nonadiabatic wall conditions. Extensive systematic calculations were made to determine the range of possible separated flows over a two-dimensional configuration as a function of separation point location and wall temperatures. Comparison between experiment and theory for separation pressure distributions on two-dimensional or axisymmetric adiabatic configurations shows generally good agreement. Good comparison between experiment and theory is indicated for a moderately-cooled axisymmetric configuration. For a highly-cooled axisymmetric configuration, the prediction of the machine program based on first-order coupling is inadequate, indicating the necessity for a higher-order coupling theory." -- page iii.
Publisher:
ISBN:
Category : Aerodynamic heating
Languages : en
Pages : 92
Book Description
"A calculative method is presented for determining separated, laminar, boundary-layer characteristics from in front of the separation point to the reattachment point under the influence of 'free interaction' between the main flow and the boundary layer. The analysis covers supersonic flow over two-dimensional and axisymmetric configurations with adiabatic or nonadiabatic wall conditions. For nonadiabatic wall conditions, theories based on first-order coupling and second-order coupling between velocity and total temperature profiles were presented. The theory based on first-order coupling was included in a machine calculation program with options for two-dimensional or axisymmetric flow and adiabatic or nonadiabatic wall conditions. Extensive systematic calculations were made to determine the range of possible separated flows over a two-dimensional configuration as a function of separation point location and wall temperatures. Comparison between experiment and theory for separation pressure distributions on two-dimensional or axisymmetric adiabatic configurations shows generally good agreement. Good comparison between experiment and theory is indicated for a moderately-cooled axisymmetric configuration. For a highly-cooled axisymmetric configuration, the prediction of the machine program based on first-order coupling is inadequate, indicating the necessity for a higher-order coupling theory." -- page iii.
NASA Technical Note
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 892
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 892
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1572
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1572
Book Description
Inhibition of Flow Separation at High Speed
Author: Larry L. Lynes
Publisher:
ISBN:
Category : Aerodynamics, Supersonic
Languages : en
Pages : 72
Book Description
The method of integral relations was successfully applied to compressible nonadiabatic turbulent boundary layers on a flat plate. The theory is designed to accept any desired eddy-viscosity model. A particular eddy-viscosity model was incorporated into the method, and the equations were programmed for application to a flat plate with no pressure gradient. The variations of the skin-friction coefficient with Reynolds number, Mach number, and temperature ratio were calculated using this program, and the results are in good accord with similar results calculated by the Spalding-Chi method and the Rubesin T' method. An analysis was made to predict to what extent turbulent separation of the free-interaction type can be inhibited by means of surface cooling. It was observed experimentally that free-interaction is applicable to separated turbulent boundary layers up to the separation point or beyond. The free-interaction model used in the analysis is based on adding the boundary-layer displacement thickness to the actual body dimensions in calculating the induced pressures. The critical temperature ratios calculated on this basis are generally greater than adiabatic wall temperature except in the supersonic range up to a Mach number approaching 3, where moderate cooling is required to inhibit separation.
Publisher:
ISBN:
Category : Aerodynamics, Supersonic
Languages : en
Pages : 72
Book Description
The method of integral relations was successfully applied to compressible nonadiabatic turbulent boundary layers on a flat plate. The theory is designed to accept any desired eddy-viscosity model. A particular eddy-viscosity model was incorporated into the method, and the equations were programmed for application to a flat plate with no pressure gradient. The variations of the skin-friction coefficient with Reynolds number, Mach number, and temperature ratio were calculated using this program, and the results are in good accord with similar results calculated by the Spalding-Chi method and the Rubesin T' method. An analysis was made to predict to what extent turbulent separation of the free-interaction type can be inhibited by means of surface cooling. It was observed experimentally that free-interaction is applicable to separated turbulent boundary layers up to the separation point or beyond. The free-interaction model used in the analysis is based on adding the boundary-layer displacement thickness to the actual body dimensions in calculating the induced pressures. The critical temperature ratios calculated on this basis are generally greater than adiabatic wall temperature except in the supersonic range up to a Mach number approaching 3, where moderate cooling is required to inhibit separation.
Government-wide Index to Federal Research & Development Reports
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1050
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1050
Book Description
AIAA 74-51 - AIAA 74-100
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 656
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 656
Book Description
Separated Flows
Author:
Publisher:
ISBN:
Category : Aerodynamics, Hypersonic
Languages : en
Pages : 270
Book Description
Publisher:
ISBN:
Category : Aerodynamics, Hypersonic
Languages : en
Pages : 270
Book Description
A Critical Evaluation of Analytic Methods for Predicting Laminar Boundary-layer, Shock-wave Interaction
Author: John D. Murphy
Publisher:
ISBN:
Category : Boundary layer
Languages : en
Pages : 36
Book Description
Publisher:
ISBN:
Category : Boundary layer
Languages : en
Pages : 36
Book Description
Calculation of Compressible Turbulent Boundary Layers with Pressure Gradients and Heat Transfer
Author: Larry L. Lynes
Publisher:
ISBN:
Category : Air flow
Languages : en
Pages : 148
Book Description
Publisher:
ISBN:
Category : Air flow
Languages : en
Pages : 148
Book Description
U.S. Government Research & Development Reports
Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 384
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 384
Book Description