Author: Murugan Anandarajan
Publisher: Springer Science & Business Media
ISBN: 3540247009
Category : Business & Economics
Languages : en
Pages : 271
Book Description
Modern businesses generate huge volumes of accounting data on a daily basis. The recent advancements in information technology have given organizations the ability to capture and store data in an efficient and effective manner. However, there is a widening gap between this data storage and usage of the data. Business intelligence techniques can help an organization obtain and process relevant accounting data quickly and cost efficiently. Such techniques include: query and reporting tools, online analytical processing (OLAP), statistical analysis, text mining, data mining, and visualization. Business Intelligence Techniques is a compilation of chapters written by experts in the various areas. While these chapters stand on their own, taken together they provide a comprehensive overview of how to exploit accounting data in the business environment.
Business Intelligence Techniques
Author: Murugan Anandarajan
Publisher: Springer Science & Business Media
ISBN: 3540247009
Category : Business & Economics
Languages : en
Pages : 271
Book Description
Modern businesses generate huge volumes of accounting data on a daily basis. The recent advancements in information technology have given organizations the ability to capture and store data in an efficient and effective manner. However, there is a widening gap between this data storage and usage of the data. Business intelligence techniques can help an organization obtain and process relevant accounting data quickly and cost efficiently. Such techniques include: query and reporting tools, online analytical processing (OLAP), statistical analysis, text mining, data mining, and visualization. Business Intelligence Techniques is a compilation of chapters written by experts in the various areas. While these chapters stand on their own, taken together they provide a comprehensive overview of how to exploit accounting data in the business environment.
Publisher: Springer Science & Business Media
ISBN: 3540247009
Category : Business & Economics
Languages : en
Pages : 271
Book Description
Modern businesses generate huge volumes of accounting data on a daily basis. The recent advancements in information technology have given organizations the ability to capture and store data in an efficient and effective manner. However, there is a widening gap between this data storage and usage of the data. Business intelligence techniques can help an organization obtain and process relevant accounting data quickly and cost efficiently. Such techniques include: query and reporting tools, online analytical processing (OLAP), statistical analysis, text mining, data mining, and visualization. Business Intelligence Techniques is a compilation of chapters written by experts in the various areas. While these chapters stand on their own, taken together they provide a comprehensive overview of how to exploit accounting data in the business environment.
Data Mining for Business Analytics
Author: Galit Shmueli
Publisher: John Wiley & Sons
ISBN: 111954985X
Category : Mathematics
Languages : en
Pages : 607
Book Description
Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R
Publisher: John Wiley & Sons
ISBN: 111954985X
Category : Mathematics
Languages : en
Pages : 607
Book Description
Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R
Seven Methods for Transforming Corporate Data Into Business Intelligence
Author: Vasant Dhar
Publisher:
ISBN: 9780132820066
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
Information systems: past, present, and emerging; Intelligence density a metric for knowledge work; The vocabulary of intelligence density; Method one: data-driven decision support; Method two: evolving solutions: genetic algorithms; Method three: simulating the brain to solve problems: neural networks; Method four: putting expert resoning in a box: rule-based systems; Method five: dealing with linguistic ambiguity: fuzzy logic; Method six: soilving problems by analogy case-based resoning; Method seven: deriving rules from data: machine learning; Appendix saving time and money with object; Appendix case studies.
Publisher:
ISBN: 9780132820066
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
Information systems: past, present, and emerging; Intelligence density a metric for knowledge work; The vocabulary of intelligence density; Method one: data-driven decision support; Method two: evolving solutions: genetic algorithms; Method three: simulating the brain to solve problems: neural networks; Method four: putting expert resoning in a box: rule-based systems; Method five: dealing with linguistic ambiguity: fuzzy logic; Method six: soilving problems by analogy case-based resoning; Method seven: deriving rules from data: machine learning; Appendix saving time and money with object; Appendix case studies.
Business Intelligence
Author: David Loshin
Publisher: Newnes
ISBN: 0123858909
Category : Computers
Languages : en
Pages : 401
Book Description
Business Intelligence: The Savvy Managers Guide, Second Edition, discusses the objectives and practices for designing and deploying a business intelligence (BI) program. It looks at the basics of a BI program, from the value of information and the mechanics of planning for success to data model infrastructure, data preparation, data analysis, integration, knowledge discovery, and the actual use of discovered knowledge. Organized into 21 chapters, this book begins with an overview of the kind of knowledge that can be exposed and exploited through the use of BI. It then proceeds with a discussion of information use in the context of how value is created within an organization, how BI can improve the ways of doing business, and organizational preparedness for exploiting the results of a BI program. It also looks at some of the critical factors to be taken into account in the planning and execution of a successful BI program. In addition, the reader is introduced to considerations for developing the BI roadmap, the platforms for analysis such as data warehouses, and the concepts of business metadata. Other chapters focus on data preparation and data discovery, the business rules approach, and data mining techniques and predictive analytics. Finally, emerging technologies such as text analytics and sentiment analysis are considered. This book will be valuable to data management and BI professionals, including senior and middle-level managers, Chief Information Officers and Chief Data Officers, senior business executives and business staff members, database or software engineers, and business analysts. - Guides managers through developing, administering, or simply understanding business intelligence technology - Keeps pace with the changes in best practices, tools, methods and processes used to transform an organization's data into actionable knowledge - Contains a handy, quick-reference to technologies and terminology
Publisher: Newnes
ISBN: 0123858909
Category : Computers
Languages : en
Pages : 401
Book Description
Business Intelligence: The Savvy Managers Guide, Second Edition, discusses the objectives and practices for designing and deploying a business intelligence (BI) program. It looks at the basics of a BI program, from the value of information and the mechanics of planning for success to data model infrastructure, data preparation, data analysis, integration, knowledge discovery, and the actual use of discovered knowledge. Organized into 21 chapters, this book begins with an overview of the kind of knowledge that can be exposed and exploited through the use of BI. It then proceeds with a discussion of information use in the context of how value is created within an organization, how BI can improve the ways of doing business, and organizational preparedness for exploiting the results of a BI program. It also looks at some of the critical factors to be taken into account in the planning and execution of a successful BI program. In addition, the reader is introduced to considerations for developing the BI roadmap, the platforms for analysis such as data warehouses, and the concepts of business metadata. Other chapters focus on data preparation and data discovery, the business rules approach, and data mining techniques and predictive analytics. Finally, emerging technologies such as text analytics and sentiment analysis are considered. This book will be valuable to data management and BI professionals, including senior and middle-level managers, Chief Information Officers and Chief Data Officers, senior business executives and business staff members, database or software engineers, and business analysts. - Guides managers through developing, administering, or simply understanding business intelligence technology - Keeps pace with the changes in best practices, tools, methods and processes used to transform an organization's data into actionable knowledge - Contains a handy, quick-reference to technologies and terminology
Mastering Tableau
Author: David Baldwin
Publisher: Packt Publishing Ltd
ISBN: 1784398845
Category : Computers
Languages : en
Pages : 464
Book Description
Master the intricacies of Tableau to create effective data visualizations About This Book Arm yourself with an arsenal of advanced chart types and geocoding to efficiently and engagingly present information Map a grid over a network node diagram and use that grid to demonstrate loads, processing time, and more in Tableau Integrate R with Tableau by utilizing R functions, libraries, and saved models Who This Book Is For If you are a business analyst without developer-level programming skills, then this book is for you. You are expected to have at least a fundamental understanding of Tableau and basic knowledge of joins, however SQL knowledge is not assumed. You should have basic computer skills, including at least moderate Excel proficiency. What You Will Learn Create a worksheet that can display the current balance for any given period in time Recreate a star schema from in a data warehouse in Tableau Combine level of detail calculations with table calculations, sets, and parameters Create custom polygons to build filled maps for area codes in the USA Visualize data using a set of analytical and advanced charting techniques Know when to use Tableau instead of PowerPoint Build a dashboard and export it to PowerPoint In Detail Tableau has emerged as one of the most popular Business Intelligence solutions in recent times, thanks to its powerful and interactive data visualization capabilities. This book will empower you to become a master in Tableau by exploiting the many new features introduced in Tableau 10.0. You will embark on this exciting journey by getting to know the valuable methods of utilizing advanced calculations to solve complex problems. These techniques include creative use of different types of calculations such as row-level, aggregate-level, and more. You will discover how almost any data visualization challenge can be met in Tableau by getting a proper understanding of the tool's inner workings and creatively exploring possibilities. You'll be armed with an arsenal of advanced chart types and techniques to enable you to efficiently and engagingly present information to a variety of audiences through the use of clear, efficient, and engaging dashboards. Explanations and examples of efficient and inefficient visualization techniques, well-designed and poorly designed dashboards, and compromise options when Tableau consumers will not embrace data visualization will build on your understanding of Tableau and how to use it efficiently. By the end of the book, you will be equipped with all the information you need to create effective dashboards and data visualization solutions using Tableau. Style and approach This book takes a direct approach, to systematically evolve to more involved functionalities such as advanced calculation, parameters & sets, data blending and R integration. This book will help you gain skill in building visualizations previously beyond your capacity.
Publisher: Packt Publishing Ltd
ISBN: 1784398845
Category : Computers
Languages : en
Pages : 464
Book Description
Master the intricacies of Tableau to create effective data visualizations About This Book Arm yourself with an arsenal of advanced chart types and geocoding to efficiently and engagingly present information Map a grid over a network node diagram and use that grid to demonstrate loads, processing time, and more in Tableau Integrate R with Tableau by utilizing R functions, libraries, and saved models Who This Book Is For If you are a business analyst without developer-level programming skills, then this book is for you. You are expected to have at least a fundamental understanding of Tableau and basic knowledge of joins, however SQL knowledge is not assumed. You should have basic computer skills, including at least moderate Excel proficiency. What You Will Learn Create a worksheet that can display the current balance for any given period in time Recreate a star schema from in a data warehouse in Tableau Combine level of detail calculations with table calculations, sets, and parameters Create custom polygons to build filled maps for area codes in the USA Visualize data using a set of analytical and advanced charting techniques Know when to use Tableau instead of PowerPoint Build a dashboard and export it to PowerPoint In Detail Tableau has emerged as one of the most popular Business Intelligence solutions in recent times, thanks to its powerful and interactive data visualization capabilities. This book will empower you to become a master in Tableau by exploiting the many new features introduced in Tableau 10.0. You will embark on this exciting journey by getting to know the valuable methods of utilizing advanced calculations to solve complex problems. These techniques include creative use of different types of calculations such as row-level, aggregate-level, and more. You will discover how almost any data visualization challenge can be met in Tableau by getting a proper understanding of the tool's inner workings and creatively exploring possibilities. You'll be armed with an arsenal of advanced chart types and techniques to enable you to efficiently and engagingly present information to a variety of audiences through the use of clear, efficient, and engaging dashboards. Explanations and examples of efficient and inefficient visualization techniques, well-designed and poorly designed dashboards, and compromise options when Tableau consumers will not embrace data visualization will build on your understanding of Tableau and how to use it efficiently. By the end of the book, you will be equipped with all the information you need to create effective dashboards and data visualization solutions using Tableau. Style and approach This book takes a direct approach, to systematically evolve to more involved functionalities such as advanced calculation, parameters & sets, data blending and R integration. This book will help you gain skill in building visualizations previously beyond your capacity.
Mastering Microsoft Power BI
Author: Brett Powell
Publisher: Packt Publishing Ltd
ISBN: 1788292286
Category : Computers
Languages : en
Pages : 632
Book Description
Design, create and manage robust Power BI solutions to gain meaningful business insights Key Features Master all the dashboarding and reporting features of Microsoft Power BI Combine data from multiple sources, create stunning visualizations and publish your reports across multiple platforms A comprehensive guide with real-world use cases and examples demonstrating how you can get the best out of Microsoft Power BI Book DescriptionThis book is intended for business intelligence professionals responsible for the design and development of Power BI content as well as managers, architects and administrators who oversee Power BI projects and deployments. The chapters flow from the planning of a Power BI project through the development and distribution of content to the administration of Power BI for an organization. BI developers will learn how to create sustainable and impactful Power BI datasets, reports, and dashboards. This includes connecting to data sources, shaping and enhancing source data, and developing an analytical data model. Additionally, top report and dashboard design practices are described using features such as Bookmarks and the Power KPI visual. BI managers will learn how Power BI’s tools work together such as with the On-premises data gateway and how content can be staged and securely distributed via Apps. Additionally, both the Power BI Report Server and Power BI Premium are reviewed. By the end of this book, you will be confident in creating effective charts, tables, reports or dashboards for any kind of data using the tools and techniques in Microsoft Power BI.What you will learn Build efficient data retrieval and transformation processes with the Power Query M Language Design scalable, user-friendly DirectQuery and Import Data Models Develop visually rich, immersive, and interactive reports and dashboards Maintain version control and stage deployments across development, test, and production environments Manage and monitor the Power BI Service and the On-premises data gateway Develop a fully on-premise solution with the Power BI Report Server Scale up a Power BI solution via Power BI Premium capacity and migration to Azure Analysis Services or SQL Server Analysis Services Who this book is for Business Intelligence professionals and existing Power BI users looking to master Power BI for all their data visualization and dashboarding needs will find this book to be useful. While understanding of the basic BI concepts is required, some exposure to Microsoft Power BI will be helpful.
Publisher: Packt Publishing Ltd
ISBN: 1788292286
Category : Computers
Languages : en
Pages : 632
Book Description
Design, create and manage robust Power BI solutions to gain meaningful business insights Key Features Master all the dashboarding and reporting features of Microsoft Power BI Combine data from multiple sources, create stunning visualizations and publish your reports across multiple platforms A comprehensive guide with real-world use cases and examples demonstrating how you can get the best out of Microsoft Power BI Book DescriptionThis book is intended for business intelligence professionals responsible for the design and development of Power BI content as well as managers, architects and administrators who oversee Power BI projects and deployments. The chapters flow from the planning of a Power BI project through the development and distribution of content to the administration of Power BI for an organization. BI developers will learn how to create sustainable and impactful Power BI datasets, reports, and dashboards. This includes connecting to data sources, shaping and enhancing source data, and developing an analytical data model. Additionally, top report and dashboard design practices are described using features such as Bookmarks and the Power KPI visual. BI managers will learn how Power BI’s tools work together such as with the On-premises data gateway and how content can be staged and securely distributed via Apps. Additionally, both the Power BI Report Server and Power BI Premium are reviewed. By the end of this book, you will be confident in creating effective charts, tables, reports or dashboards for any kind of data using the tools and techniques in Microsoft Power BI.What you will learn Build efficient data retrieval and transformation processes with the Power Query M Language Design scalable, user-friendly DirectQuery and Import Data Models Develop visually rich, immersive, and interactive reports and dashboards Maintain version control and stage deployments across development, test, and production environments Manage and monitor the Power BI Service and the On-premises data gateway Develop a fully on-premise solution with the Power BI Report Server Scale up a Power BI solution via Power BI Premium capacity and migration to Azure Analysis Services or SQL Server Analysis Services Who this book is for Business Intelligence professionals and existing Power BI users looking to master Power BI for all their data visualization and dashboarding needs will find this book to be useful. While understanding of the basic BI concepts is required, some exposure to Microsoft Power BI will be helpful.
Managing Data in Motion
Author: April Reeve
Publisher: Newnes
ISBN: 0123977916
Category : Computers
Languages : en
Pages : 203
Book Description
Managing Data in Motion describes techniques that have been developed for significantly reducing the complexity of managing system interfaces and enabling scalable architectures. Author April Reeve brings over two decades of experience to present a vendor-neutral approach to moving data between computing environments and systems. Readers will learn the techniques, technologies, and best practices for managing the passage of data between computer systems and integrating disparate data together in an enterprise environment. The average enterprise's computing environment is comprised of hundreds to thousands computer systems that have been built, purchased, and acquired over time. The data from these various systems needs to be integrated for reporting and analysis, shared for business transaction processing, and converted from one format to another when old systems are replaced and new systems are acquired. The management of the "data in motion" in organizations is rapidly becoming one of the biggest concerns for business and IT management. Data warehousing and conversion, real-time data integration, and cloud and "big data" applications are just a few of the challenges facing organizations and businesses today. Managing Data in Motion tackles these and other topics in a style easily understood by business and IT managers as well as programmers and architects. - Presents a vendor-neutral overview of the different technologies and techniques for moving data between computer systems including the emerging solutions for unstructured as well as structured data types - Explains, in non-technical terms, the architecture and components required to perform data integration - Describes how to reduce the complexity of managing system interfaces and enable a scalable data architecture that can handle the dimensions of "Big Data"
Publisher: Newnes
ISBN: 0123977916
Category : Computers
Languages : en
Pages : 203
Book Description
Managing Data in Motion describes techniques that have been developed for significantly reducing the complexity of managing system interfaces and enabling scalable architectures. Author April Reeve brings over two decades of experience to present a vendor-neutral approach to moving data between computing environments and systems. Readers will learn the techniques, technologies, and best practices for managing the passage of data between computer systems and integrating disparate data together in an enterprise environment. The average enterprise's computing environment is comprised of hundreds to thousands computer systems that have been built, purchased, and acquired over time. The data from these various systems needs to be integrated for reporting and analysis, shared for business transaction processing, and converted from one format to another when old systems are replaced and new systems are acquired. The management of the "data in motion" in organizations is rapidly becoming one of the biggest concerns for business and IT management. Data warehousing and conversion, real-time data integration, and cloud and "big data" applications are just a few of the challenges facing organizations and businesses today. Managing Data in Motion tackles these and other topics in a style easily understood by business and IT managers as well as programmers and architects. - Presents a vendor-neutral overview of the different technologies and techniques for moving data between computer systems including the emerging solutions for unstructured as well as structured data types - Explains, in non-technical terms, the architecture and components required to perform data integration - Describes how to reduce the complexity of managing system interfaces and enable a scalable data architecture that can handle the dimensions of "Big Data"
Fundamentals of Business Intelligence
Author: Wilfried Grossmann
Publisher: Springer
ISBN: 3662465310
Category : Computers
Languages : en
Pages : 361
Book Description
This book presents a comprehensive and systematic introduction to transforming process-oriented data into information about the underlying business process, which is essential for all kinds of decision-making. To that end, the authors develop step-by-step models and analytical tools for obtaining high-quality data structured in such a way that complex analytical tools can be applied. The main emphasis is on process mining and data mining techniques and the combination of these methods for process-oriented data. After a general introduction to the business intelligence (BI) process and its constituent tasks in chapter 1, chapter 2 discusses different approaches to modeling in BI applications. Chapter 3 is an overview and provides details of data provisioning, including a section on big data. Chapter 4 tackles data description, visualization, and reporting. Chapter 5 introduces data mining techniques for cross-sectional data. Different techniques for the analysis of temporal data are then detailed in Chapter 6. Subsequently, chapter 7 explains techniques for the analysis of process data, followed by the introduction of analysis techniques for multiple BI perspectives in chapter 8. The book closes with a summary and discussion in chapter 9. Throughout the book, (mostly open source) tools are recommended, described and applied; a more detailed survey on tools can be found in the appendix, and a detailed code for the solutions together with instructions on how to install the software used can be found on the accompanying website. Also, all concepts presented are illustrated and selected examples and exercises are provided. The book is suitable for graduate students in computer science, and the dedicated website with examples and solutions makes the book ideal as a textbook for a first course in business intelligence in computer science or business information systems. Additionally, practitioners and industrial developers who are interested in the concepts behind business intelligence will benefit from the clear explanations and many examples.
Publisher: Springer
ISBN: 3662465310
Category : Computers
Languages : en
Pages : 361
Book Description
This book presents a comprehensive and systematic introduction to transforming process-oriented data into information about the underlying business process, which is essential for all kinds of decision-making. To that end, the authors develop step-by-step models and analytical tools for obtaining high-quality data structured in such a way that complex analytical tools can be applied. The main emphasis is on process mining and data mining techniques and the combination of these methods for process-oriented data. After a general introduction to the business intelligence (BI) process and its constituent tasks in chapter 1, chapter 2 discusses different approaches to modeling in BI applications. Chapter 3 is an overview and provides details of data provisioning, including a section on big data. Chapter 4 tackles data description, visualization, and reporting. Chapter 5 introduces data mining techniques for cross-sectional data. Different techniques for the analysis of temporal data are then detailed in Chapter 6. Subsequently, chapter 7 explains techniques for the analysis of process data, followed by the introduction of analysis techniques for multiple BI perspectives in chapter 8. The book closes with a summary and discussion in chapter 9. Throughout the book, (mostly open source) tools are recommended, described and applied; a more detailed survey on tools can be found in the appendix, and a detailed code for the solutions together with instructions on how to install the software used can be found on the accompanying website. Also, all concepts presented are illustrated and selected examples and exercises are provided. The book is suitable for graduate students in computer science, and the dedicated website with examples and solutions makes the book ideal as a textbook for a first course in business intelligence in computer science or business information systems. Additionally, practitioners and industrial developers who are interested in the concepts behind business intelligence will benefit from the clear explanations and many examples.
Data Virtualization for Business Intelligence Systems
Author: Rick van der Lans
Publisher: Elsevier
ISBN: 0123944252
Category : Business & Economics
Languages : en
Pages : 297
Book Description
Annotation In this book, Rick van der Lans explains how data virtualization servers work, what techniques to use to optimize access to various data sources and how these products can be applied in different projects.
Publisher: Elsevier
ISBN: 0123944252
Category : Business & Economics
Languages : en
Pages : 297
Book Description
Annotation In this book, Rick van der Lans explains how data virtualization servers work, what techniques to use to optimize access to various data sources and how these products can be applied in different projects.
Cognition-Driven Decision Support for Business Intelligence
Author: Li Niu
Publisher: Springer Science & Business Media
ISBN: 3642032079
Category : Mathematics
Languages : en
Pages : 240
Book Description
Cognition-driven decision support system (DSS) has been recognized as a paradigm in the research and development of business intelligence (BI). Cognitive decision support aims to help managers in their decision making from human cognitive aspects, such as thinking, sensing, understanding and predicting, and fully reuse their experience. Among these cognitive aspects, decision makers’ situation awareness (SA) and mental models are considered to be two important prerequisites for decision making, particularly in ill-structured and dynamic decision situations with uncertainties, time pressure and high personal stake. In today’s business domain, decision making is becoming increasingly complex. To make a successful decision, managers’ SA about their business environments becomes a critical factor. This book presents theoretical models as well practical techniques of cognitiondriven DSS. It first introduces some important concepts of cognition orientation in decision making process and some techniques in related research areas including DSS, data warehouse and BI, offering readers a preliminary for moving forward in this book. It then proposes a cognition-driven decision process (CDDP) model which incorporates SA and experience (mental models) as its central components. The goal of the CDDP model is to facilitate cognitive decision support to managers on the basis of BI systems. It also presents relevant techniques developed to support the implementation of the CDDP model in a BI environment. Key issues addressed of a typical business decision cycle in the CDDP model include: natural language interface for a manager’s SA input, extraction of SA semantics, construction of data warehouse queries based on the manger’s SA and experience, situation information retrieval from data warehouse, how the manager perceives situation information and update SA, how the manager’s SA leads to a final decision. Finally, a cognition-driven DSS, FACETS, and two illustrative applications of this system are discussed.
Publisher: Springer Science & Business Media
ISBN: 3642032079
Category : Mathematics
Languages : en
Pages : 240
Book Description
Cognition-driven decision support system (DSS) has been recognized as a paradigm in the research and development of business intelligence (BI). Cognitive decision support aims to help managers in their decision making from human cognitive aspects, such as thinking, sensing, understanding and predicting, and fully reuse their experience. Among these cognitive aspects, decision makers’ situation awareness (SA) and mental models are considered to be two important prerequisites for decision making, particularly in ill-structured and dynamic decision situations with uncertainties, time pressure and high personal stake. In today’s business domain, decision making is becoming increasingly complex. To make a successful decision, managers’ SA about their business environments becomes a critical factor. This book presents theoretical models as well practical techniques of cognitiondriven DSS. It first introduces some important concepts of cognition orientation in decision making process and some techniques in related research areas including DSS, data warehouse and BI, offering readers a preliminary for moving forward in this book. It then proposes a cognition-driven decision process (CDDP) model which incorporates SA and experience (mental models) as its central components. The goal of the CDDP model is to facilitate cognitive decision support to managers on the basis of BI systems. It also presents relevant techniques developed to support the implementation of the CDDP model in a BI environment. Key issues addressed of a typical business decision cycle in the CDDP model include: natural language interface for a manager’s SA input, extraction of SA semantics, construction of data warehouse queries based on the manger’s SA and experience, situation information retrieval from data warehouse, how the manager perceives situation information and update SA, how the manager’s SA leads to a final decision. Finally, a cognition-driven DSS, FACETS, and two illustrative applications of this system are discussed.