Author: Wojbor A. Woyczynski
Publisher: Springer
ISBN: 3540494804
Category : Mathematics
Languages : en
Pages : 326
Book Description
These lecture notes are woven around the subject of Burgers' turbulence/KPZ model of interface growth, a study of the nonlinear parabolic equation with random initial data. The analysis is conducted mostly in the space-time domain, with less attention paid to the frequency-domain picture. However, the bibliography contains a more complete information about other directions in the field which over the last decade enjoyed a vigorous expansion. The notes are addressed to a diverse audience, including mathematicians, statisticians, physicists, fluid dynamicists and engineers, and contain both rigorous and heuristic arguments. Because of the multidisciplinary audience, the notes also include a concise exposition of some classical topics in probability theory, such as Brownian motion, Wiener polynomial chaos, etc.
Burgers-KPZ Turbulence
Author: Wojbor A. Woyczynski
Publisher: Springer
ISBN: 3540494804
Category : Mathematics
Languages : en
Pages : 326
Book Description
These lecture notes are woven around the subject of Burgers' turbulence/KPZ model of interface growth, a study of the nonlinear parabolic equation with random initial data. The analysis is conducted mostly in the space-time domain, with less attention paid to the frequency-domain picture. However, the bibliography contains a more complete information about other directions in the field which over the last decade enjoyed a vigorous expansion. The notes are addressed to a diverse audience, including mathematicians, statisticians, physicists, fluid dynamicists and engineers, and contain both rigorous and heuristic arguments. Because of the multidisciplinary audience, the notes also include a concise exposition of some classical topics in probability theory, such as Brownian motion, Wiener polynomial chaos, etc.
Publisher: Springer
ISBN: 3540494804
Category : Mathematics
Languages : en
Pages : 326
Book Description
These lecture notes are woven around the subject of Burgers' turbulence/KPZ model of interface growth, a study of the nonlinear parabolic equation with random initial data. The analysis is conducted mostly in the space-time domain, with less attention paid to the frequency-domain picture. However, the bibliography contains a more complete information about other directions in the field which over the last decade enjoyed a vigorous expansion. The notes are addressed to a diverse audience, including mathematicians, statisticians, physicists, fluid dynamicists and engineers, and contain both rigorous and heuristic arguments. Because of the multidisciplinary audience, the notes also include a concise exposition of some classical topics in probability theory, such as Brownian motion, Wiener polynomial chaos, etc.
Burgers-Kpz Turbulence
Author: Wojbor A. Woyczynski
Publisher:
ISBN: 9783662181584
Category :
Languages : en
Pages : 340
Book Description
Publisher:
ISBN: 9783662181584
Category :
Languages : en
Pages : 340
Book Description
Burgers-KPZ Turbulence
Author: Wojbor A. Woyczyński
Publisher:
ISBN:
Category : Burgers equation
Languages : en
Pages : 318
Book Description
These lecture notes are woven around the subject of Burgers' turbulence/KPZ model of interface growth, a study of the nonlinear parabolic equation with random initial data. The analysis is conducted mostly in the space-time domain, with less attention paid to the frequency-domain picture. However, the bibliography contains a more complete information about other directions in the field which over the last decade enjoyed a vigorous expansion. The notes are addressed to a diverse audience, including mathematicians, statisticians, physicists, fluid dynamicists and engineers, and contain both rigorous and heuristic arguments. Because of the multidisciplinary audience, the notes also include a concise exposition of some classical topics in probability theory, such as Brownian motion, Wiener polynomial chaos, etc.
Publisher:
ISBN:
Category : Burgers equation
Languages : en
Pages : 318
Book Description
These lecture notes are woven around the subject of Burgers' turbulence/KPZ model of interface growth, a study of the nonlinear parabolic equation with random initial data. The analysis is conducted mostly in the space-time domain, with less attention paid to the frequency-domain picture. However, the bibliography contains a more complete information about other directions in the field which over the last decade enjoyed a vigorous expansion. The notes are addressed to a diverse audience, including mathematicians, statisticians, physicists, fluid dynamicists and engineers, and contain both rigorous and heuristic arguments. Because of the multidisciplinary audience, the notes also include a concise exposition of some classical topics in probability theory, such as Brownian motion, Wiener polynomial chaos, etc.
Distributions in the Physical and Engineering Sciences, Volume 3
Author: Alexander I. Saichev
Publisher: Birkhäuser
ISBN: 3319925865
Category : Mathematics
Languages : en
Pages : 413
Book Description
Continuing the authors’ multivolume project, this text considers the theory of distributions from an applied perspective, demonstrating how effective a combination of analytic and probabilistic methods can be for solving problems in the physical and engineering sciences. Volume 1 covered foundational topics such as distributional and fractional calculus, the integral transform, and wavelets, and Volume 2 explored linear and nonlinear dynamics in continuous media. With this volume, the scope is extended to the use of distributional tools in the theory of generalized stochastic processes and fields, and in anomalous fractional random dynamics. Chapters cover topics such as probability distributions; generalized stochastic processes, Brownian motion, and the white noise; stochastic differential equations and generalized random fields; Burgers turbulence and passive tracer transport in Burgers flows; and linear, nonlinear, and multiscale anomalous fractional dynamics in continuous media. The needs of the applied-sciences audience are addressed by a careful and rich selection of examples arising in real-life industrial and scientific labs and a thorough discussion of their physical significance. Numerous illustrations generate a better understanding of the core concepts discussed in the text, and a large number of exercises at the end of each chapter expand on these concepts. Distributions in the Physical and Engineering Sciences is intended to fill a gap in the typical undergraduate engineering/physical sciences curricula, and as such it will be a valuable resource for researchers and graduate students working in these areas. The only prerequisites are a three-four semester calculus sequence (including ordinary differential equations, Fourier series, complex variables, and linear algebra), and some probability theory, but basic definitions and facts are covered as needed. An appendix also provides background material concerning the Dirac-delta and other distributions.
Publisher: Birkhäuser
ISBN: 3319925865
Category : Mathematics
Languages : en
Pages : 413
Book Description
Continuing the authors’ multivolume project, this text considers the theory of distributions from an applied perspective, demonstrating how effective a combination of analytic and probabilistic methods can be for solving problems in the physical and engineering sciences. Volume 1 covered foundational topics such as distributional and fractional calculus, the integral transform, and wavelets, and Volume 2 explored linear and nonlinear dynamics in continuous media. With this volume, the scope is extended to the use of distributional tools in the theory of generalized stochastic processes and fields, and in anomalous fractional random dynamics. Chapters cover topics such as probability distributions; generalized stochastic processes, Brownian motion, and the white noise; stochastic differential equations and generalized random fields; Burgers turbulence and passive tracer transport in Burgers flows; and linear, nonlinear, and multiscale anomalous fractional dynamics in continuous media. The needs of the applied-sciences audience are addressed by a careful and rich selection of examples arising in real-life industrial and scientific labs and a thorough discussion of their physical significance. Numerous illustrations generate a better understanding of the core concepts discussed in the text, and a large number of exercises at the end of each chapter expand on these concepts. Distributions in the Physical and Engineering Sciences is intended to fill a gap in the typical undergraduate engineering/physical sciences curricula, and as such it will be a valuable resource for researchers and graduate students working in these areas. The only prerequisites are a three-four semester calculus sequence (including ordinary differential equations, Fourier series, complex variables, and linear algebra), and some probability theory, but basic definitions and facts are covered as needed. An appendix also provides background material concerning the Dirac-delta and other distributions.
Integrable Systems and Algebraic Geometry
Author: Ron Donagi
Publisher: Cambridge University Press
ISBN: 1108715745
Category : Mathematics
Languages : en
Pages : 421
Book Description
A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.
Publisher: Cambridge University Press
ISBN: 1108715745
Category : Mathematics
Languages : en
Pages : 421
Book Description
A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.
Waves and Structures in Nonlinear Nondispersive Media
Author: Sergey Nikolaevich Gurbatov
Publisher: Springer Science & Business Media
ISBN: 3642236170
Category : Science
Languages : en
Pages : 477
Book Description
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is the Full member of Russian Academy of Sciences, the head of Department at Moscow University and Professor at BTH (Sweden). Dr. Saichev A.I. is the Professor at the Faculty of Radiophysics of Nizhny Novgorod State University, Professor of ETH Zürich.
Publisher: Springer Science & Business Media
ISBN: 3642236170
Category : Science
Languages : en
Pages : 477
Book Description
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is the Full member of Russian Academy of Sciences, the head of Department at Moscow University and Professor at BTH (Sweden). Dr. Saichev A.I. is the Professor at the Faculty of Radiophysics of Nizhny Novgorod State University, Professor of ETH Zürich.
Advances and Challenges in Space-time Modelling of Natural Events
Author: Emilio Porcu
Publisher: Springer Science & Business Media
ISBN: 3642170854
Category : Mathematics
Languages : en
Pages : 263
Book Description
This book arises from the International Spring School "Advances and Challenges in Space-Time modelling of Natural Events," which took place March 2010. It details recent developments, new methods and applications in spatial statistics and related areas. This book arises from the International Spring School "Advances and Challenges in Space-Time modelling of Natural Events," which took place March 2010. It details recent developments, new methods and applications in spatial statistics and related areas.
Publisher: Springer Science & Business Media
ISBN: 3642170854
Category : Mathematics
Languages : en
Pages : 263
Book Description
This book arises from the International Spring School "Advances and Challenges in Space-Time modelling of Natural Events," which took place March 2010. It details recent developments, new methods and applications in spatial statistics and related areas. This book arises from the International Spring School "Advances and Challenges in Space-Time modelling of Natural Events," which took place March 2010. It details recent developments, new methods and applications in spatial statistics and related areas.
Integrable Systems and Algebraic Geometry: Volume 1
Author: Ron Donagi
Publisher: Cambridge University Press
ISBN: 110880358X
Category : Mathematics
Languages : en
Pages : 421
Book Description
Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. This first volume covers a wide range of areas related to integrable systems, often emphasizing the deep connections with algebraic geometry. Common themes include theta functions and Abelian varieties, Lax equations, integrable hierarchies, Hamiltonian flows and difference operators. These powerful tools are applied to spinning top, Hitchin, Painleve and many other notable special equations.
Publisher: Cambridge University Press
ISBN: 110880358X
Category : Mathematics
Languages : en
Pages : 421
Book Description
Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. This first volume covers a wide range of areas related to integrable systems, often emphasizing the deep connections with algebraic geometry. Common themes include theta functions and Abelian varieties, Lax equations, integrable hierarchies, Hamiltonian flows and difference operators. These powerful tools are applied to spinning top, Hitchin, Painleve and many other notable special equations.
Distributions in the Physical and Engineering Sciences, Volume 2
Author: Alexander I. Saichev
Publisher: Springer Science & Business Media
ISBN: 0817646523
Category : Mathematics
Languages : en
Pages : 427
Book Description
Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems. It is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important for practitioners and researchers. The goal of the books is to give the reader, specialist and non-specialist, useable and modern mathematical tools in their research and analysis. Volume 2: Linear and Nonlinear Dynamics of Continuous Media continues the multivolume project which endeavors to show how the theory of distributions, also called the theory of generalized functions, can be used by graduate students and researchers in applied mathematics, physical sciences, and engineering. It contains an analysis of the three basic types of linear partial differential equations--elliptic, parabolic, and hyperbolic--as well as chapters on first-order nonlinear partial differential equations and conservation laws, and generalized solutions of first-order nonlinear PDEs. Nonlinear wave, growing interface, and Burger’s equations, KdV equations, and the equations of gas dynamics and porous media are also covered. The careful explanations, accessible writing style, many illustrations/examples and solutions also make it suitable for use as a self-study reference by anyone seeking greater understanding and proficiency in the problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. Features · Application oriented exposition of distributional (Dirac delta) methods in the theory of partial differential equations. Abstract formalism is keep to a minimum. · Careful and rich selection of examples and problems arising in real-life situations. Complete solutions to all exercises appear at the end of the book. · Clear explanations, motivations, and illustration of all necessary mathematical concepts.
Publisher: Springer Science & Business Media
ISBN: 0817646523
Category : Mathematics
Languages : en
Pages : 427
Book Description
Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems. It is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important for practitioners and researchers. The goal of the books is to give the reader, specialist and non-specialist, useable and modern mathematical tools in their research and analysis. Volume 2: Linear and Nonlinear Dynamics of Continuous Media continues the multivolume project which endeavors to show how the theory of distributions, also called the theory of generalized functions, can be used by graduate students and researchers in applied mathematics, physical sciences, and engineering. It contains an analysis of the three basic types of linear partial differential equations--elliptic, parabolic, and hyperbolic--as well as chapters on first-order nonlinear partial differential equations and conservation laws, and generalized solutions of first-order nonlinear PDEs. Nonlinear wave, growing interface, and Burger’s equations, KdV equations, and the equations of gas dynamics and porous media are also covered. The careful explanations, accessible writing style, many illustrations/examples and solutions also make it suitable for use as a self-study reference by anyone seeking greater understanding and proficiency in the problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. Features · Application oriented exposition of distributional (Dirac delta) methods in the theory of partial differential equations. Abstract formalism is keep to a minimum. · Careful and rich selection of examples and problems arising in real-life situations. Complete solutions to all exercises appear at the end of the book. · Clear explanations, motivations, and illustration of all necessary mathematical concepts.
In Memoriam Paul-André Meyer - Séminaire de Probabilités XXXIX
Author: Marc Yor
Publisher: Springer
ISBN: 3540355138
Category : Mathematics
Languages : en
Pages : 423
Book Description
The 39th volume of Séminaire de Probabilités is a tribute to the memory of Paul André Meyer. His life and achievements are recalled in this book, and tributes are paid by his friends and colleagues. This volume also contains mathematical contributions to classical and quantum stochastic calculus, the theory of processes, martingales and their applications to mathematical finance and Brownian motion. These contributions provide an overview on the current trends of stochastic calculus.
Publisher: Springer
ISBN: 3540355138
Category : Mathematics
Languages : en
Pages : 423
Book Description
The 39th volume of Séminaire de Probabilités is a tribute to the memory of Paul André Meyer. His life and achievements are recalled in this book, and tributes are paid by his friends and colleagues. This volume also contains mathematical contributions to classical and quantum stochastic calculus, the theory of processes, martingales and their applications to mathematical finance and Brownian motion. These contributions provide an overview on the current trends of stochastic calculus.