Building the Agile Database

Building the Agile Database PDF Author: Larry Burns
Publisher: Technics Publications
ISBN: 1634620232
Category : Computers
Languages : en
Pages : 277

Get Book Here

Book Description
Is fast development the enemy of good development? Not necessarily. Agile development requires that databases are designed and built quickly enough to meet fast-based delivery schedules — but in a way that also delivers maximum business value and reuse. How can these requirements both be satisfied? This book, suitable for practitioners at all levels, will explain how to design and build enterprise-quality high-value databases within the constraints of an Agile project. Starting with an overview of the business case for good data management practices, the book defines the various stakeholder groups involved in the software development process, explains the economics of software development (including “time to market” vs. “time to money”), and describes an approach to Agile database development based on the five PRISM principles. This book explains how to work with application developers and other stakeholders, examines critical issues in Agile Development and Data Management, and describes how developers and data professionals can work together to make Agile projects successful while delivering maximum value data to the enterprise. Building the Agile Database will serve as an excellent reference for application developers, data managers, DBAs, project managers, Scrum Masters and IT managers looking to get more value from their development efforts. Among the topics covered: 1. Why Agile is more than just the latest development fad 2. The critical distinction between the logical and physical views of data 3. The importance of data virtualization, and how to achieve it 4. How to eliminate the “object-relational impedance mismatch” 5. The difference between logical modeling and physical design 6. Why databases are more than “persistence engines” 7. When and how to do logical modeling and physical design 8. Use of the logical data model in model-driven development 9. Refactoring made easier 10. Developing an “Agile Attitude”

Building the Agile Database

Building the Agile Database PDF Author: Larry Burns
Publisher: Technics Publications
ISBN: 1634620232
Category : Computers
Languages : en
Pages : 277

Get Book Here

Book Description
Is fast development the enemy of good development? Not necessarily. Agile development requires that databases are designed and built quickly enough to meet fast-based delivery schedules — but in a way that also delivers maximum business value and reuse. How can these requirements both be satisfied? This book, suitable for practitioners at all levels, will explain how to design and build enterprise-quality high-value databases within the constraints of an Agile project. Starting with an overview of the business case for good data management practices, the book defines the various stakeholder groups involved in the software development process, explains the economics of software development (including “time to market” vs. “time to money”), and describes an approach to Agile database development based on the five PRISM principles. This book explains how to work with application developers and other stakeholders, examines critical issues in Agile Development and Data Management, and describes how developers and data professionals can work together to make Agile projects successful while delivering maximum value data to the enterprise. Building the Agile Database will serve as an excellent reference for application developers, data managers, DBAs, project managers, Scrum Masters and IT managers looking to get more value from their development efforts. Among the topics covered: 1. Why Agile is more than just the latest development fad 2. The critical distinction between the logical and physical views of data 3. The importance of data virtualization, and how to achieve it 4. How to eliminate the “object-relational impedance mismatch” 5. The difference between logical modeling and physical design 6. Why databases are more than “persistence engines” 7. When and how to do logical modeling and physical design 8. Use of the logical data model in model-driven development 9. Refactoring made easier 10. Developing an “Agile Attitude”

Agile Database Techniques

Agile Database Techniques PDF Author: Scott Ambler
Publisher: John Wiley & Sons
ISBN: 1118081366
Category : Computers
Languages : en
Pages : 482

Get Book Here

Book Description
Describes Agile Modeling Driven Design (AMDD) and Test-Driven Design (TDD) approaches, database refactoring, database encapsulation strategies, and tools that support evolutionary techniques Agile software developers often use object and relational database (RDB) technology together and as a result must overcome the impedance mismatch The author covers techniques for mapping objects to RDBs and for implementing concurrency control, referential integrity, shared business logic, security access control, reports, and XML An agile foundation describes fundamental skills that all agile software developers require, particularly Agile DBAs Includes object modeling, UML data modeling, data normalization, class normalization, and how to deal with legacy databases Scott W. Ambler is author of Agile Modeling (0471202827), a contributing editor with Software Development (www.sdmagazine.com), and a featured speaker at software conferences worldwide

Agile Data Science 2.0

Agile Data Science 2.0 PDF Author: Russell Jurney
Publisher: "O'Reilly Media, Inc."
ISBN: 1491960086
Category : Computers
Languages : en
Pages : 351

Get Book Here

Book Description
Data science teams looking to turn research into useful analytics applications require not only the right tools, but also the right approach if they’re to succeed. With the revised second edition of this hands-on guide, up-and-coming data scientists will learn how to use the Agile Data Science development methodology to build data applications with Python, Apache Spark, Kafka, and other tools. Author Russell Jurney demonstrates how to compose a data platform for building, deploying, and refining analytics applications with Apache Kafka, MongoDB, ElasticSearch, d3.js, scikit-learn, and Apache Airflow. You’ll learn an iterative approach that lets you quickly change the kind of analysis you’re doing, depending on what the data is telling you. Publish data science work as a web application, and affect meaningful change in your organization. Build value from your data in a series of agile sprints, using the data-value pyramid Extract features for statistical models from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future via classification and regression Translate predictions into actions Get feedback from users after each sprint to keep your project on track

Agile Data Warehouse Design

Agile Data Warehouse Design PDF Author: Lawrence Corr
Publisher: DecisionOne Consulting
ISBN: 0956817203
Category : Business & Economics
Languages : en
Pages : 330

Get Book Here

Book Description
Agile Data Warehouse Design is a step-by-step guide for capturing data warehousing/business intelligence (DW/BI) requirements and turning them into high performance dimensional models in the most direct way: by modelstorming (data modeling + brainstorming) with BI stakeholders. This book describes BEAM✲, an agile approach to dimensional modeling, for improving communication between data warehouse designers, BI stakeholders and the whole DW/BI development team. BEAM✲ provides tools and techniques that will encourage DW/BI designers and developers to move away from their keyboards and entity relationship based tools and model interactively with their colleagues. The result is everyone thinks dimensionally from the outset! Developers understand how to efficiently implement dimensional modeling solutions. Business stakeholders feel ownership of the data warehouse they have created, and can already imagine how they will use it to answer their business questions. Within this book, you will learn: ✲ Agile dimensional modeling using Business Event Analysis & Modeling (BEAM✲) ✲ Modelstorming: data modeling that is quicker, more inclusive, more productive, and frankly more fun! ✲ Telling dimensional data stories using the 7Ws (who, what, when, where, how many, why and how) ✲ Modeling by example not abstraction; using data story themes, not crow's feet, to describe detail ✲ Storyboarding the data warehouse to discover conformed dimensions and plan iterative development ✲ Visual modeling: sketching timelines, charts and grids to model complex process measurement - simply ✲ Agile design documentation: enhancing star schemas with BEAM✲ dimensional shorthand notation ✲ Solving difficult DW/BI performance and usability problems with proven dimensional design patterns Lawrence Corr is a data warehouse designer and educator. As Principal of DecisionOne Consulting, he helps clients to review and simplify their data warehouse designs, and advises vendors on visual data modeling techniques. He regularly teaches agile dimensional modeling courses worldwide and has taught dimensional DW/BI skills to thousands of students. Jim Stagnitto is a data warehouse and master data management architect specializing in the healthcare, financial services, and information service industries. He is the founder of the data warehousing and data mining consulting firm Llumino.

Agile Data Science

Agile Data Science PDF Author: Russell Jurney
Publisher: "O'Reilly Media, Inc."
ISBN: 1449326919
Category : Computers
Languages : en
Pages : 269

Get Book Here

Book Description
Mining big data requires a deep investment in people and time. How can you be sure you’re building the right models? With this hands-on book, you’ll learn a flexible toolset and methodology for building effective analytics applications with Hadoop. Using lightweight tools such as Python, Apache Pig, and the D3.js library, your team will create an agile environment for exploring data, starting with an example application to mine your own email inboxes. You’ll learn an iterative approach that enables you to quickly change the kind of analysis you’re doing, depending on what the data is telling you. All example code in this book is available as working Heroku apps. Create analytics applications by using the agile big data development methodology Build value from your data in a series of agile sprints, using the data-value stack Gain insight by using several data structures to extract multiple features from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future, and translate predictions into action Get feedback from users after each sprint to keep your project on track

Refactoring Databases

Refactoring Databases PDF Author: Scott W. Ambler
Publisher: Pearson Education
ISBN: 0321630173
Category : Computers
Languages : en
Pages : 554

Get Book Here

Book Description
Refactoring has proven its value in a wide range of development projects–helping software professionals improve system designs, maintainability, extensibility, and performance. Now, for the first time, leading agile methodologist Scott Ambler and renowned consultant Pramodkumar Sadalage introduce powerful refactoring techniques specifically designed for database systems. Ambler and Sadalage demonstrate how small changes to table structures, data, stored procedures, and triggers can significantly enhance virtually any database design–without changing semantics. You’ll learn how to evolve database schemas in step with source code–and become far more effective in projects relying on iterative, agile methodologies. This comprehensive guide and reference helps you overcome the practical obstacles to refactoring real-world databases by covering every fundamental concept underlying database refactoring. Using start-to-finish examples, the authors walk you through refactoring simple standalone database applications as well as sophisticated multi-application scenarios. You’ll master every task involved in refactoring database schemas, and discover best practices for deploying refactorings in even the most complex production environments. The second half of this book systematically covers five major categories of database refactorings. You’ll learn how to use refactoring to enhance database structure, data quality, and referential integrity; and how to refactor both architectures and methods. This book provides an extensive set of examples built with Oracle and Java and easily adaptable for other languages, such as C#, C++, or VB.NET, and other databases, such as DB2, SQL Server, MySQL, and Sybase. Using this book’s techniques and examples, you can reduce waste, rework, risk, and cost–and build database systems capable of evolving smoothly, far into the future.

Agile Data Warehousing

Agile Data Warehousing PDF Author: Ralph Hughes
Publisher: iUniverse
ISBN: 0595471676
Category : Agile software development
Languages : en
Pages : 323

Get Book Here

Book Description
Contains a six-stage plan for starting new warehouse projects and guiding programmers step-by-step until they become a world-class, Agile development team. It describes also how to avoid or contain the fierce opposition that radically new methods can encounter from the traditionally-minded IS departments found in many large companies.

Building a Scalable Data Warehouse with Data Vault 2.0

Building a Scalable Data Warehouse with Data Vault 2.0 PDF Author: Daniel Linstedt
Publisher: Morgan Kaufmann
ISBN: 0128026480
Category : Computers
Languages : en
Pages : 684

Get Book Here

Book Description
The Data Vault was invented by Dan Linstedt at the U.S. Department of Defense, and the standard has been successfully applied to data warehousing projects at organizations of different sizes, from small to large-size corporations. Due to its simplified design, which is adapted from nature, the Data Vault 2.0 standard helps prevent typical data warehousing failures. "Building a Scalable Data Warehouse" covers everything one needs to know to create a scalable data warehouse end to end, including a presentation of the Data Vault modeling technique, which provides the foundations to create a technical data warehouse layer. The book discusses how to build the data warehouse incrementally using the agile Data Vault 2.0 methodology. In addition, readers will learn how to create the input layer (the stage layer) and the presentation layer (data mart) of the Data Vault 2.0 architecture including implementation best practices. Drawing upon years of practical experience and using numerous examples and an easy to understand framework, Dan Linstedt and Michael Olschimke discuss: - How to load each layer using SQL Server Integration Services (SSIS), including automation of the Data Vault loading processes. - Important data warehouse technologies and practices. - Data Quality Services (DQS) and Master Data Services (MDS) in the context of the Data Vault architecture. - Provides a complete introduction to data warehousing, applications, and the business context so readers can get-up and running fast - Explains theoretical concepts and provides hands-on instruction on how to build and implement a data warehouse - Demystifies data vault modeling with beginning, intermediate, and advanced techniques - Discusses the advantages of the data vault approach over other techniques, also including the latest updates to Data Vault 2.0 and multiple improvements to Data Vault 1.0

Agile Analytics

Agile Analytics PDF Author: Ken Collier
Publisher: Addison-Wesley
ISBN: 032150481X
Category : Business & Economics
Languages : en
Pages : 368

Get Book Here

Book Description
Using Agile methods, you can bring far greater innovation, value, and quality to any data warehousing (DW), business intelligence (BI), or analytics project. However, conventional Agile methods must be carefully adapted to address the unique characteristics of DW/BI projects. In Agile Analytics, Agile pioneer Ken Collier shows how to do just that. Collier introduces platform-agnostic Agile solutions for integrating infrastructures consisting of diverse operational, legacy, and specialty systems that mix commercial and custom code. Using working examples, he shows how to manage analytics development teams with widely diverse skill sets and how to support enormous and fast-growing data volumes. Collier's techniques offer optimal value whether your projects involve "back-end" data management, "front-end" business analysis, or both. Part I focuses on Agile project management techniques and delivery team coordination, introducing core practices that shape the way your Agile DW/BI project community can collaborate toward success Part II presents technical methods for enabling continuous delivery of business value at production-quality levels, including evolving superior designs; test-driven DW development; version control; and project automation Collier brings together proven solutions you can apply right now--whether you're an IT decision-maker, data warehouse professional, database administrator, business intelligence specialist, or database developer. With his help, you can mitigate project risk, improve business alignment, achieve better results--and have fun along the way.

Building Analytics Teams

Building Analytics Teams PDF Author: John K. Thompson
Publisher: Packt Publishing Ltd
ISBN: 180020518X
Category : Computers
Languages : en
Pages : 395

Get Book Here

Book Description
Master the skills necessary to hire and manage a team of highly skilled individuals to design, build, and implement applications and systems based on advanced analytics and AI Key FeaturesLearn to create an operationally effective advanced analytics team in a corporate environmentSelect and undertake projects that have a high probability of success and deliver the improved top and bottom-line resultsUnderstand how to create relationships with executives, senior managers, peers, and subject matter experts that lead to team collaboration, increased funding, and long-term success for you and your teamBook Description In Building Analytics Teams, John K. Thompson, with his 30+ years of experience and expertise, illustrates the fundamental concepts of building and managing a high-performance analytics team, including what to do, who to hire, projects to undertake, and what to avoid in the journey of building an analytically sound team. The core processes in creating an effective analytics team and the importance of the business decision-making life cycle are explored to help achieve initial and sustainable success. The book demonstrates the various traits of a successful and high-performing analytics team and then delineates the path to achieve this with insights on the mindset, advanced analytics models, and predictions based on data analytics. It also emphasizes the significance of the macro and micro processes required to evolve in response to rapidly changing business needs. The book dives into the methods and practices of managing, developing, and leading an analytics team. Once you've brought the team up to speed, the book explains how to govern executive expectations and select winning projects. By the end of this book, you will have acquired the knowledge to create an effective business analytics team and develop a production environment that delivers ongoing operational improvements for your organization. What you will learnAvoid organizational and technological pitfalls of moving from a defined project to a production environmentEnable team members to focus on higher-value work and tasksBuild Advanced Analytics and Artificial Intelligence (AA&AI) functions in an organizationOutsource certain projects to competent and capable third partiesSupport the operational areas that intend to invest in business intelligence, descriptive statistics, and small-scale predictive analyticsAnalyze the operational area, the processes, the data, and the organizational resistanceWho this book is for This book is for senior executives, senior and junior managers, and those who are working as part of a team that is accountable for designing, building, delivering and ensuring business success through advanced analytics and artificial intelligence systems and applications. At least 5 to 10 years of experience in driving your organization to a higher level of efficiency will be helpful.