Building Machine Learning and Deep Learning Models on Google Cloud Platform

Building Machine Learning and Deep Learning Models on Google Cloud Platform PDF Author: Ekaba Bisong
Publisher: Apress
ISBN: 1484244702
Category : Computers
Languages : en
Pages : 703

Get Book Here

Book Description
Take a systematic approach to understanding the fundamentals of machine learning and deep learning from the ground up and how they are applied in practice. You will use this comprehensive guide for building and deploying learning models to address complex use cases while leveraging the computational resources of Google Cloud Platform. Author Ekaba Bisong shows you how machine learning tools and techniques are used to predict or classify events based on a set of interactions between variables known as features or attributes in a particular dataset. He teaches you how deep learning extends the machine learning algorithm of neural networks to learn complex tasks that are difficult for computers to perform, such as recognizing faces and understanding languages. And you will know how to leverage cloud computing to accelerate data science and machine learning deployments. Building Machine Learning and Deep Learning Models on Google Cloud Platform is divided into eight parts that cover the fundamentals of machine learning and deep learning, the concept of data science and cloud services, programming for data science using the Python stack, Google Cloud Platform (GCP) infrastructure and products, advanced analytics on GCP, and deploying end-to-end machine learning solution pipelines on GCP. What You’ll Learn Understand the principles and fundamentals of machine learning and deep learning, the algorithms, how to use them, when to use them, and how to interpret your resultsKnow the programming concepts relevant to machine and deep learning design and development using the Python stack Build and interpret machine and deep learning models Use Google Cloud Platform tools and services to develop and deploy large-scale machine learning and deep learning products Be aware of the different facets and design choices to consider when modeling a learning problem Productionalize machine learning models into software products Who This Book Is For Beginners to the practice of data science and applied machine learning, data scientists at all levels, machine learning engineers, Google Cloud Platform data engineers/architects, and software developers

Building Machine Learning and Deep Learning Models on Google Cloud Platform

Building Machine Learning and Deep Learning Models on Google Cloud Platform PDF Author: Ekaba Bisong
Publisher: Apress
ISBN: 1484244702
Category : Computers
Languages : en
Pages : 703

Get Book Here

Book Description
Take a systematic approach to understanding the fundamentals of machine learning and deep learning from the ground up and how they are applied in practice. You will use this comprehensive guide for building and deploying learning models to address complex use cases while leveraging the computational resources of Google Cloud Platform. Author Ekaba Bisong shows you how machine learning tools and techniques are used to predict or classify events based on a set of interactions between variables known as features or attributes in a particular dataset. He teaches you how deep learning extends the machine learning algorithm of neural networks to learn complex tasks that are difficult for computers to perform, such as recognizing faces and understanding languages. And you will know how to leverage cloud computing to accelerate data science and machine learning deployments. Building Machine Learning and Deep Learning Models on Google Cloud Platform is divided into eight parts that cover the fundamentals of machine learning and deep learning, the concept of data science and cloud services, programming for data science using the Python stack, Google Cloud Platform (GCP) infrastructure and products, advanced analytics on GCP, and deploying end-to-end machine learning solution pipelines on GCP. What You’ll Learn Understand the principles and fundamentals of machine learning and deep learning, the algorithms, how to use them, when to use them, and how to interpret your resultsKnow the programming concepts relevant to machine and deep learning design and development using the Python stack Build and interpret machine and deep learning models Use Google Cloud Platform tools and services to develop and deploy large-scale machine learning and deep learning products Be aware of the different facets and design choices to consider when modeling a learning problem Productionalize machine learning models into software products Who This Book Is For Beginners to the practice of data science and applied machine learning, data scientists at all levels, machine learning engineers, Google Cloud Platform data engineers/architects, and software developers

Building Machine Learning and Deep Learning Models on Google Cloud Platform

Building Machine Learning and Deep Learning Models on Google Cloud Platform PDF Author: Ekaba Bisong
Publisher: Apress
ISBN: 1484244702
Category : Computers
Languages : en
Pages : 703

Get Book Here

Book Description
Take a systematic approach to understanding the fundamentals of machine learning and deep learning from the ground up and how they are applied in practice. You will use this comprehensive guide for building and deploying learning models to address complex use cases while leveraging the computational resources of Google Cloud Platform. Author Ekaba Bisong shows you how machine learning tools and techniques are used to predict or classify events based on a set of interactions between variables known as features or attributes in a particular dataset. He teaches you how deep learning extends the machine learning algorithm of neural networks to learn complex tasks that are difficult for computers to perform, such as recognizing faces and understanding languages. And you will know how to leverage cloud computing to accelerate data science and machine learning deployments. Building Machine Learning and Deep Learning Models on Google Cloud Platform is divided into eight parts that cover the fundamentals of machine learning and deep learning, the concept of data science and cloud services, programming for data science using the Python stack, Google Cloud Platform (GCP) infrastructure and products, advanced analytics on GCP, and deploying end-to-end machine learning solution pipelines on GCP. What You’ll Learn Understand the principles and fundamentals of machine learning and deep learning, the algorithms, how to use them, when to use them, and how to interpret your resultsKnow the programming concepts relevant to machine and deep learning design and development using the Python stack Build and interpret machine and deep learning models Use Google Cloud Platform tools and services to develop and deploy large-scale machine learning and deep learning products Be aware of the different facets and design choices to consider when modeling a learning problem Productionalize machine learning models into software products Who This Book Is For Beginners to the practice of data science and applied machine learning, data scientists at all levels, machine learning engineers, Google Cloud Platform data engineers/architects, and software developers

Deep Learning Models on Cloud Platforms

Deep Learning Models on Cloud Platforms PDF Author: Vijay Ramamoorthi
Publisher: RK Publication
ISBN: 8197781141
Category : Computers
Languages : en
Pages : 328

Get Book Here

Book Description
Deep Learning Models on Cloud Platforms provides an in-depth exploration of the integration of deep learning techniques with cloud computing environments. Architectures, and frameworks for developing and deploying deep learning models at scale. It addresses practical considerations, including data management, computational resources, and cost-efficiency, while highlighting popular cloud platforms like AWS, Google Cloud, and Azure. Through real-world examples and case studies, readers will gain insights into best practices for leveraging cloud infrastructure to enhance deep learning capabilities and drive innovation across various industries.

Up and Running Google AutoML and AI Platform: Building Machine Learning and NLP Models Using AutoML and AI Platform for Production Environment (English Edition)

Up and Running Google AutoML and AI Platform: Building Machine Learning and NLP Models Using AutoML and AI Platform for Production Environment (English Edition) PDF Author: Navin Sabharwal
Publisher: BPB Publications
ISBN: 9388511921
Category : Computers
Languages : en
Pages : 163

Get Book Here

Book Description
A step-by-step guide to build machine learning and NLP models using Google AutoML KEY FEATURESÊ ¥Understand the basic concepts of Machine Learning and Natural Language Processing ¥Understand the basic concepts of Google AutoML, AI Platform, and Tensorflow ¥Explore the Google AutoML Natural Language service ¥Understand how to implement NLP models like Issue Categorization Systems using AutoML ¥Understand how to release the features of AutoML models as REST APIs for other applications ¥Understand how to implement the NLP models using the Google AI Platform DESCRIPTIONÊÊ Google AutoML and AI Platform provide an innovative way to build an AI-based system with less effort. In this book, you will learn about the basic concepts of Machine Learning and Natural Language Processing. You will also learn about the Google AI services such as AutoML, AI Platform, and Tensorflow, GoogleÕs deep learning library, along with some practical examples using these services in real-life scenarios. You will also learn how the AutoML Natural Language service and AI Platform can be used to build NLP and Machine Learning models and how their features can be released as REST APIs for other applications. In this book, you will also learn the usage of GoogleÕs BigQuery, DataPrep, and DataProc for building an end-to-end machine learning pipeline. Ê This book will give you an in-depth knowledge of Google AutoML and AI Platform by implementing real-life examples such as the Issue Categorization System, Sentiment Analysis, and Loan Default Prediction System. This book is relevant to the developers, cloud enthusiasts, and cloud architects at the beginner and intermediate levels. WHAT YOU WILL LEARNÊ By the end of this book, you will learn how Google AutoML, AI Platform, BigQuery, DataPrep, and Dapaproc can be used to build an end-to-end machine learning pipeline. You will also learn how different types of AI problems can be solved using these Google AI services. A step-by-step implementation of some common NLP problems such as the Issue Categorization System and Sentiment Analysis System that provide you with hands-on experience in building complex AI-based systems by easily leveraging the GCP AI services. Ê WHO IS THIS BOOK FORÊ This book is for machine learning engineers, NLP users, and data professionals who want to develop and streamline their ML models and put them into production using Google AI services. Prior knowledge of python programming and the basics of machine learning would be preferred. TABLE OF CONTENTS 1. Introduction to Artificial Intelligence 2. Introducing the Google Cloud Platform 3. AutoML Natural Language 4. Google AI Platform 5. Google Data Analysis, Preparation, and Processing Services AUTHOR BIOÊ Navin Sabharwal: Navin is an innovator, leader, author, and consultant in AI and Machine Learning, Cloud Computing, Big Data Analytics, Software Product Development, Engineering, and R&D. He has authored books on technologies such as GCP, AWS, Azure, AI and Machine Learning systems, IBM Watson, chef, GKE, Containers, and Microservices. He is reachable at [email protected]. Amit Agrawal: Amit holds a masterÕs degree in Computer Science and Engineering from MNNIT (Motilal Nehru National Institute of Technology, Allahabad), one of the premier institutes of Engineering in India. He is working as a principal Data Scientist and researcher, delivering solutions in the fields of AI and Machine Learning. He is responsible for designing end-to-end solutions and architecture for enterprise products. He is reachable at [email protected].

Hands-On Machine Learning on Google Cloud Platform

Hands-On Machine Learning on Google Cloud Platform PDF Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 1788398874
Category : Computers
Languages : en
Pages : 489

Get Book Here

Book Description
Unleash Google's Cloud Platform to build, train and optimize machine learning models Key Features Get well versed in GCP pre-existing services to build your own smart models A comprehensive guide covering aspects from data processing, analyzing to building and training ML models A practical approach to produce your trained ML models and port them to your mobile for easy access Book Description Google Cloud Machine Learning Engine combines the services of Google Cloud Platform with the power and flexibility of TensorFlow. With this book, you will not only learn to build and train different complexities of machine learning models at scale but also host them in the cloud to make predictions. This book is focused on making the most of the Google Machine Learning Platform for large datasets and complex problems. You will learn from scratch how to create powerful machine learning based applications for a wide variety of problems by leveraging different data services from the Google Cloud Platform. Applications include NLP, Speech to text, Reinforcement learning, Time series, recommender systems, image classification, video content inference and many other. We will implement a wide variety of deep learning use cases and also make extensive use of data related services comprising the Google Cloud Platform ecosystem such as Firebase, Storage APIs, Datalab and so forth. This will enable you to integrate Machine Learning and data processing features into your web and mobile applications. By the end of this book, you will know the main difficulties that you may encounter and get appropriate strategies to overcome these difficulties and build efficient systems. What you will learn Use Google Cloud Platform to build data-based applications for dashboards, web, and mobile Create, train and optimize deep learning models for various data science problems on big data Learn how to leverage BigQuery to explore big datasets Use Google’s pre-trained TensorFlow models for NLP, image, video and much more Create models and architectures for Time series, Reinforcement Learning, and generative models Create, evaluate, and optimize TensorFlow and Keras models for a wide range of applications Who this book is for This book is for data scientists, machine learning developers and AI developers who want to learn Google Cloud Platform services to build machine learning applications. Since the interaction with the Google ML platform is mostly done via the command line, the reader is supposed to have some familiarity with the bash shell and Python scripting. Some understanding of machine learning and data science concepts will be handy

Neuroergonomics and Cognitive Engineering

Neuroergonomics and Cognitive Engineering PDF Author: Hasan Ayaz
Publisher: AHFE International
ISBN: 1958651184
Category : Technology & Engineering
Languages : en
Pages : 164

Get Book Here

Book Description
Neuroergonomics and Cognitive Engineering Proceedings of the 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022), July 24–28, 2022, New York, USA

Artificial Intelligence Applications in Specialty Crops

Artificial Intelligence Applications in Specialty Crops PDF Author: Yiannis Ampatzidis
Publisher: Frontiers Media SA
ISBN: 2889745570
Category : Science
Languages : en
Pages : 444

Get Book Here

Book Description


Intelligent Methods with Applications in Volcanology and Seismology

Intelligent Methods with Applications in Volcanology and Seismology PDF Author: Alireza Hajian
Publisher: Springer Nature
ISBN: 3031154320
Category : Science
Languages : en
Pages : 216

Get Book Here

Book Description
This book presents intelligent methods like neural, neuro-fuzzy, machine learning, deep learning and metaheuristic methods and their applications in both volcanology and seismology. The complex system of volcanoes and also earthquakes is a big challenge to identify their behavior using available models, which motivates scientists to apply non-model based methods. As there are lots of seismology and volcanology data sets, i.e., the local and global networks, one solution is using intelligent methods in which data-based algorithms are used.

Google Certification Guide - Google Professional Machine Learning Engineer

Google Certification Guide - Google Professional Machine Learning Engineer PDF Author: Cybellium Ltd
Publisher: Cybellium Ltd
ISBN:
Category : Computers
Languages : en
Pages : 171

Get Book Here

Book Description
Google Certification Guide - Google Professional Machine Learning Engineer Unlock the World of Machine Learning on Google Cloud Embark on a transformative journey to become a Google Professional Machine Learning Engineer with this comprehensive guide. Designed for those who aspire to master the application of machine learning techniques and tools in the Google Cloud environment, this book is an essential resource for professionals seeking to harness the power of ML in their projects and workflows. What Awaits Inside: Advanced ML Concepts and Practices: Dive deep into the world of machine learning on Google Cloud, covering services like AI Platform, TensorFlow, and BigQuery ML. Real-World Applications: Learn through practical scenarios and hands-on examples, illustrating the effective implementation of machine learning models and solutions on Google Cloud. Strategic Exam Preparation: Gain crucial insights into the certification exam's structure and content, complemented by comprehensive practice questions and preparation strategies. Cutting-Edge ML Trends: Stay updated with the latest advancements in Google Cloud machine learning technologies, ensuring your skills remain relevant and innovative. Authored by a Machine Learning Expert Written by an experienced practitioner in the field of machine learning on Google Cloud, this guide bridges the gap between theoretical knowledge and practical application, offering a rich and comprehensive learning experience. Your Comprehensive Guide to ML Certification Whether you’re an experienced machine learning engineer or looking to elevate your expertise in Google Cloud's ML offerings, this book is a valuable companion, guiding you through the intricacies of machine learning in Google Cloud and preparing you for the Professional Machine Learning Engineer certification. Elevate Your Machine Learning Journey This guide is more than a pathway to certification; it's a deep dive into the practical and innovative aspects of machine learning in the Google Cloud environment, designed to equip you with the skills and knowledge for a thriving career in this dynamic field. Begin Your Machine Learning Adventure Start your journey to becoming a certified Google Professional Machine Learning Engineer. This guide is not just about passing an exam; it's about unlocking new opportunities and frontiers in the exciting world of machine learning on Google Cloud. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com

Advances in Intelligent Data Analysis XXI

Advances in Intelligent Data Analysis XXI PDF Author: Bruno Crémilleux
Publisher: Springer Nature
ISBN: 3031300475
Category : Computers
Languages : en
Pages : 514

Get Book Here

Book Description
This book constitutes the proceedings of the 21st International Symposium on Intelligent Data Analysis, IDA 2022, which was held in Louvain-la-Neuve, Belgium, during April 12-14, 2023. The 38 papers included in this book were carefully reviewed and selected from 91 submissions. IDA is an international symposium presenting advances in the intelligent analysis of data. Distinguishing characteristics of IDA are its focus on novel, inspiring ideas, its focus on research, and its relatively small scale.