Brain Storm Optimization Algorithms

Brain Storm Optimization Algorithms PDF Author: Shi Cheng
Publisher: Springer
ISBN: 3030150704
Category : Technology & Engineering
Languages : en
Pages : 305

Get Book Here

Book Description
Brain Storm Optimization (BSO) algorithms are a new kind of swarm intelligence method, which is based on the collective behavior of human beings, i.e., on the brainstorming process. Since the introduction of BSO algorithms in 2011, many studies on them have been conducted. They not only offer an optimization method, but could also be viewed as a framework of optimization techniques. The process employed in the algorithms could be simplified as a framework with two basic operations: the converging operation and the diverging operation. A “good enough” optimum could be obtained through recursive solution divergence and convergence. The resulting optimization algorithm would naturally have the capability of both convergence and divergence. This book is primarily intended for researchers, engineers, and graduate students with an interest in BSO algorithms and their applications. The chapters cover various aspects of BSO algorithms, and collectively provide broad insights into what these algorithms have to offer. The book is ideally suited as a graduate-level textbook, whereby students may be tasked with the study of the rich variants of BSO algorithms that involves a hands-on implementation to demonstrate the utility and applicability of BSO algorithms in solving optimization problems.

Brain Storm Optimization Algorithms

Brain Storm Optimization Algorithms PDF Author: Shi Cheng
Publisher: Springer
ISBN: 3030150704
Category : Technology & Engineering
Languages : en
Pages : 305

Get Book Here

Book Description
Brain Storm Optimization (BSO) algorithms are a new kind of swarm intelligence method, which is based on the collective behavior of human beings, i.e., on the brainstorming process. Since the introduction of BSO algorithms in 2011, many studies on them have been conducted. They not only offer an optimization method, but could also be viewed as a framework of optimization techniques. The process employed in the algorithms could be simplified as a framework with two basic operations: the converging operation and the diverging operation. A “good enough” optimum could be obtained through recursive solution divergence and convergence. The resulting optimization algorithm would naturally have the capability of both convergence and divergence. This book is primarily intended for researchers, engineers, and graduate students with an interest in BSO algorithms and their applications. The chapters cover various aspects of BSO algorithms, and collectively provide broad insights into what these algorithms have to offer. The book is ideally suited as a graduate-level textbook, whereby students may be tasked with the study of the rich variants of BSO algorithms that involves a hands-on implementation to demonstrate the utility and applicability of BSO algorithms in solving optimization problems.

Emerging Research on Swarm Intelligence and Algorithm Optimization

Emerging Research on Swarm Intelligence and Algorithm Optimization PDF Author: Shi, Yuhui
Publisher: IGI Global
ISBN: 1466663294
Category : Computers
Languages : en
Pages : 369

Get Book Here

Book Description
Throughout time, scientists have looked to nature in order to understand and model solutions for complex real-world problems. In particular, the study of self-organizing entities, such as social insect populations, presents a new opportunity within the field of artificial intelligence. Emerging Research on Swarm Intelligence and Algorithm Optimization discusses current research analyzing how the collective behavior of decentralized systems in the natural world can be applied to intelligent system design. Discussing the application of swarm principles, optimization techniques, and key algorithms being used in the field, this publication serves as an essential reference for academicians, upper-level students, IT developers, and IT theorists.

Advances in Swarm Intelligence

Advances in Swarm Intelligence PDF Author: Ying Tan
Publisher: Springer Nature
ISBN: 3030539563
Category : Computers
Languages : en
Pages : 689

Get Book Here

Book Description
This book constitutes the proceedings of the 11th International Conference on Advances in Swarm Intelligence, ICSI 2020, held in July 2020 in Belgrade, Serbia. Due to the COVID-19 pandemic the conference was held virtually. The 63 papers included in this volume were carefully reviewed and selected from 127 submissions. The papers are organized in 12 cohesive topical sections as follows: Swarm intelligence and nature-inspired computing; swarm-based computing algorithms for optimization; particle swarm optimization; ant colony optimization; brain storm optimization algorithm; bacterial foraging optimization; genetic algorithm and evolutionary computation; multi-objective optimization; machine learning; data mining; multi-agent system and robotic swarm, and other applications.

Algorithms to Live By

Algorithms to Live By PDF Author: Brian Christian
Publisher: Macmillan
ISBN: 1627790365
Category : Business & Economics
Languages : en
Pages : 366

Get Book Here

Book Description
'Algorithms to Live By' looks at the simple, precise algorithms that computers use to solve the complex 'human' problems that we face, and discovers what they can tell us about the nature and origin of the mind.

Neural Computing for Advanced Applications

Neural Computing for Advanced Applications PDF Author: Haijun Zhang
Publisher: Springer Nature
ISBN: 981157670X
Category : Computers
Languages : en
Pages : 542

Get Book Here

Book Description
This book presents refereed proceedings of the First International Conference on Neural Computing for Advanced Applications, NCAA 2020, held in July, 2020. Due to the COVID-19 pandemic the conference was held online. The 36 full papers and 7 short papers were thorougly reviewed and selected from a total of 113 qualified submissions. The papers present resent research on such topics as neural network theory, and cognitive sciences, machine learning, data mining, data security & privacy protection, and data-driven applications, computational intelligence, nature-inspired optimizers, and their engineering applications, cloud/edge/fog computing, the Internet of Things/Vehicles (IoT/IoV), and their system optimization, control systems, network synchronization, system integration, and industrial artificial intelligence, fuzzy logic, neuro-fuzzy systems, decision making, and their applications in management sciences, computer vision, image processing, and their industrial applications, and natural language processing, machine translation, knowledge graphs, and their applications.

Beyond the Worst-Case Analysis of Algorithms

Beyond the Worst-Case Analysis of Algorithms PDF Author: Tim Roughgarden
Publisher: Cambridge University Press
ISBN: 1108494315
Category : Computers
Languages : en
Pages : 705

Get Book Here

Book Description
Introduces exciting new methods for assessing algorithms for problems ranging from clustering to linear programming to neural networks.

2020 IEEE Congress on Evolutionary Computation (CEC)

2020 IEEE Congress on Evolutionary Computation (CEC) PDF Author: IEEE Staff
Publisher:
ISBN: 9781728169309
Category :
Languages : en
Pages :

Get Book Here

Book Description
IEEE CEC is the leading event in the field of evolutionary computation, and covers all topics in evolutionary computation from theory to applications

Discrete Problems in Nature Inspired Algorithms

Discrete Problems in Nature Inspired Algorithms PDF Author: Anupam Shukla
Publisher: CRC Press
ISBN: 9780367572372
Category : Biological systems
Languages : en
Pages : 310

Get Book Here

Book Description
This book includes introduction of several algorithms which are exclusively for graph based problems, namely combinatorial optimization problems, path formation problems, etc. Each chapter includes the introduction of the basic traditional nature inspired algorithm and discussion of the modified version for discrete algorithms including problems pertaining to discussed algorithms.

Handbook of AI-based Metaheuristics

Handbook of AI-based Metaheuristics PDF Author: Anand J. Kulkarni
Publisher: CRC Press
ISBN: 1000434257
Category : Computers
Languages : en
Pages : 584

Get Book Here

Book Description
At the heart of the optimization domain are mathematical modeling of the problem and the solution methodologies. The problems are becoming larger and with growing complexity. Such problems are becoming cumbersome when handled by traditional optimization methods. This has motivated researchers to resort to artificial intelligence (AI)-based, nature-inspired solution methodologies or algorithms. The Handbook of AI-based Metaheuristics provides a wide-ranging reference to the theoretical and mathematical formulations of metaheuristics, including bio-inspired, swarm-based, socio-cultural, and physics-based methods or algorithms; their testing and validation, along with detailed illustrative solutions and applications; and newly devised metaheuristic algorithms. This will be a valuable reference for researchers in industry and academia, as well as for all Master’s and PhD students working in the metaheuristics and applications domains.

Advances in Swarm Intelligence

Advances in Swarm Intelligence PDF Author: Ying Tan
Publisher: Springer Nature
ISBN: 3030788113
Category : Computers
Languages : en
Pages : 580

Get Book Here

Book Description
his two-volume set LNCS 12689-12690 constitutes the refereed proceedings of the 12th International Conference on Advances in Swarm Intelligence, ICSI 2021, held in Qingdao, China, in July 2021. The 104 full papers presented in this volume were carefully reviewed and selected from 177 submissions. They cover topics such as: Swarm Intelligence and Nature-Inspired Computing; Swarm-based Computing Algorithms for Optimization; Particle Swarm Optimization; Ant Colony Optimization; Differential Evolution; Genetic Algorithm and Evolutionary Computation; Fireworks Algorithms; Brain Storm Optimization Algorithm; Bacterial Foraging Optimization Algorithm; DNA Computing Methods; Multi-Objective Optimization; Swarm Robotics and Multi-Agent System; UAV Cooperation and Control; Machine Learning; Data Mining; and Other Applications.