The Scaled Boundary Finite Element Method

The Scaled Boundary Finite Element Method PDF Author: John P. Wolf
Publisher: John Wiley & Sons
ISBN: 9780471486824
Category : Technology & Engineering
Languages : en
Pages : 398

Get Book Here

Book Description
A novel computational procedure called the scaled boundary finite-element method is described which combines the advantages of the finite-element and boundary-element methods : Of the finite-element method that no fundamental solution is required and thus expanding the scope of application, for instance to anisotropic material without an increase in complexity and that singular integrals are avoided and that symmetry of the results is automatically satisfied. Of the boundary-element method that the spatial dimension is reduced by one as only the boundary is discretized with surface finite elements, reducing the data preparation and computational efforts, that the boundary conditions at infinity are satisfied exactly and that no approximation other than that of the surface finite elements on the boundary is introduced. In addition, the scaled boundary finite-element method presents appealing features of its own : an analytical solution inside the domain is achieved, permitting for instance accurate stress intensity factors to be determined directly and no spatial discretization of certain free and fixed boundaries and interfaces between different materials is required. In addition, the scaled boundary finite-element method combines the advantages of the analytical and numerical approaches. In the directions parallel to the boundary, where the behaviour is, in general, smooth, the weighted-residual approximation of finite elements applies, leading to convergence in the finite-element sense. In the third (radial) direction, the procedure is analytical, permitting e.g. stress-intensity factors to be determined directly based on their definition or the boundary conditions at infinity to be satisfied exactly. In a nutshell, the scaled boundary finite-element method is a semi-analytical fundamental-solution-less boundary-element method based on finite elements. The best of both worlds is achieved in two ways: with respect to the analytical and numerical methods and with respect to the finite-element and boundary-element methods within the numerical procedures. The book serves two goals: Part I is an elementary text, without any prerequisites, a primer, but which using a simple model problem still covers all aspects of the method and Part II presents a detailed derivation of the general case of statics, elastodynamics and diffusion.

The Scaled Boundary Finite Element Method

The Scaled Boundary Finite Element Method PDF Author: John P. Wolf
Publisher: John Wiley & Sons
ISBN: 9780471486824
Category : Technology & Engineering
Languages : en
Pages : 398

Get Book Here

Book Description
A novel computational procedure called the scaled boundary finite-element method is described which combines the advantages of the finite-element and boundary-element methods : Of the finite-element method that no fundamental solution is required and thus expanding the scope of application, for instance to anisotropic material without an increase in complexity and that singular integrals are avoided and that symmetry of the results is automatically satisfied. Of the boundary-element method that the spatial dimension is reduced by one as only the boundary is discretized with surface finite elements, reducing the data preparation and computational efforts, that the boundary conditions at infinity are satisfied exactly and that no approximation other than that of the surface finite elements on the boundary is introduced. In addition, the scaled boundary finite-element method presents appealing features of its own : an analytical solution inside the domain is achieved, permitting for instance accurate stress intensity factors to be determined directly and no spatial discretization of certain free and fixed boundaries and interfaces between different materials is required. In addition, the scaled boundary finite-element method combines the advantages of the analytical and numerical approaches. In the directions parallel to the boundary, where the behaviour is, in general, smooth, the weighted-residual approximation of finite elements applies, leading to convergence in the finite-element sense. In the third (radial) direction, the procedure is analytical, permitting e.g. stress-intensity factors to be determined directly based on their definition or the boundary conditions at infinity to be satisfied exactly. In a nutshell, the scaled boundary finite-element method is a semi-analytical fundamental-solution-less boundary-element method based on finite elements. The best of both worlds is achieved in two ways: with respect to the analytical and numerical methods and with respect to the finite-element and boundary-element methods within the numerical procedures. The book serves two goals: Part I is an elementary text, without any prerequisites, a primer, but which using a simple model problem still covers all aspects of the method and Part II presents a detailed derivation of the general case of statics, elastodynamics and diffusion.

Boundary Element Methods in Elastodynamics

Boundary Element Methods in Elastodynamics PDF Author: George D. Manolis
Publisher: Taylor & Francis
ISBN: 9780046200190
Category : Science
Languages : en
Pages : 282

Get Book Here

Book Description


The Boundary Element Method, Volume 2

The Boundary Element Method, Volume 2 PDF Author: M. H. Aliabadi
Publisher: John Wiley & Sons
ISBN: 9780470842980
Category : Technology & Engineering
Languages : en
Pages : 614

Get Book Here

Book Description
The boundary element method (BEM) is a modern numerical technique, which has enjoyed increasing popularity over the last two decades, and is now an established alternative to traditional computational methods of engineering analysis. The main advantage of the BEM is its unique ability to provide a complete solution in terms of boundary values only, with substantial savings in modelling effort. This two-volume book set is designed to provide the readers with a comprehensive and up-to-date account of the boundary element method and its application to solving engineering problems. Each volume is a self-contained book including a substantial amount of material not previously covered by other text books on the subject. Volume 1 covers applications to heat transfer, acoustics, electrochemistry and fluid mechanics problems, while volume 2 concentrates on solids and structures, describing applications to elasticity, plasticity, elastodynamics, fracture mechanics and contact analysis. The early chapters are designed as a teaching text for final year undergraduate courses. Both volumes reflect the experience of the authors over a period of more than twenty years of boundary element research. This volume, Applications in Solids and Structures, provides a comprehensive presentation of the BEM from fundamentals to advanced engineering applications and encompasses: Elasticity for 2D, 3D and Plates and Shells Non-linear, Transient and Thermal Stress Analysis Crack Growth and Multi-body Contact Mechanics Sensitivity Analysis and Optimisation Analysis of Assembled Structures. An important feature of this book is the in-depth presentation of BEM formulations in all the above fields, including detailed discussions of the basic theory, numerical algorithms and where possible simple examples are included, as well as test results for practical engineering applications of the method. Although most of the methods presented are the latest developments in the field, the author has included some simple techniques, which are helpful in understanding the computer implementation of BEM. Another notable feature is the comprehensive presentation of a new generation of boundary elements known as the Dual Boundary Element Method. Written by an internationally recognised authority in the field, this is essential reading for postgraduates, researchers and practitioners in Aerospace, Mechanical and Civil Engineering and Applied Mathematics.

Boundary Element Methods in Elastodynamics

Boundary Element Methods in Elastodynamics PDF Author: You Tian
Publisher:
ISBN:
Category :
Languages : en
Pages : 474

Get Book Here

Book Description


Boundary Element Methods for Engineers and Scientists

Boundary Element Methods for Engineers and Scientists PDF Author: Lothar Gaul
Publisher: Springer Science & Business Media
ISBN: 3662051362
Category : Technology & Engineering
Languages : en
Pages : 491

Get Book Here

Book Description
Over the past decades, the Boundary Element Method has emerged as a ver satile and powerful tool for the solution of engineering problems, presenting in many cases an alternative to the more widely used Finite Element Method. As with any numerical method, the engineer or scientist who applies it to a practical problem needs to be acquainted with, and understand, its basic principles to be able to apply it correctly and be aware of its limitations. It is with this intention that we have endeavoured to write this book: to give the student or practitioner an easy-to-understand introductory course to the method so as to enable him or her to apply it judiciously. As the title suggests, this book not only serves as an introductory course, but also cov ers some advanced topics that we consider important for the researcher who needs to be up-to-date with new developments. This book is the result of our teaching experiences with the Boundary Element Method, along with research and consulting activities carried out in the field. Its roots lie in a graduate course on the Boundary Element Method given by the authors at the university of Stuttgart. The experiences gained from teaching and the remarks and questions of the students have contributed to shaping the 'Introductory course' (Chapters 1-8) to the needs of the stu dents without assuming a background in numerical methods in general or the Boundary Element Method in particular.

Boundary Element Methods

Boundary Element Methods PDF Author: Q. Du
Publisher: Elsevier
ISBN: 1483297942
Category : Science
Languages : en
Pages : 429

Get Book Here

Book Description
Significant developments in the boundary element method during the last two decades have made it a powerful alternative to the domain-type numerical methods of solution such as the finite element method. The advances made in the BEM are more or less due to the innovation of efficient computational techniques by introducing boundary elements for discretization of the boundary integral equations resulting from the so-called direct formulation. BEM has therefore become an efficient tool for optimal design and other inverse problems. These proceedings include discussion of the applications of BEM in mechanical engineering and the principles that have developed to make it an increasingly useful method of problem solving.

Boundary Element Analysis

Boundary Element Analysis PDF Author: Mohammed Ameen
Publisher: CRC Press
ISBN: 9780849310010
Category : Mathematics
Languages : en
Pages : 288

Get Book Here

Book Description
Boundary Element Analysis: Theory and Programming introduces the theory behind the boundary element method and its computer applications. The author uses Cartesian tensor notation throughout the book and includes the steps involved in deriving many of the equations. The text includes computer programs in Fortran 77 for elastostatic, plate bending, and free and forced vibration problems with detailed descriptions of the code.

Developments in Boundary Element Methods

Developments in Boundary Element Methods PDF Author: P.K. Banerjee
Publisher: CRC Press
ISBN: 0203974506
Category : Architecture
Languages : en
Pages : 299

Get Book Here

Book Description
Nine detailed survey chapters by different authors present a number of applications of BEMs.

Boundary Elements in Dynamics

Boundary Elements in Dynamics PDF Author: J. Dominguez
Publisher: WIT Press
ISBN: 1853122580
Category : Technology & Engineering
Languages : en
Pages : 724

Get Book Here

Book Description
A reference for those who need to acquire detailed knowledge of the formulation, implementation, and practical applications of BEM in dynamics. The author presents research on BEM in dynamics of continua. The main emphasis is on the development of the different boundary element formulations.

Stress Analysis by Boundary Element Methods

Stress Analysis by Boundary Element Methods PDF Author: J. Balaš
Publisher: Elsevier
ISBN: 148329174X
Category : Technology & Engineering
Languages : en
Pages : 699

Get Book Here

Book Description
The boundary element method is an extremely versatile and powerful tool of computational mechanics which has already become a popular alternative to the well established finite element method. This book presents a comprehensive and up-to-date treatise on the boundary element method (BEM) in its applications to various fields of continuum mechanics such as: elastostatics, elastodynamics, thermoelasticity, micropolar elasticity, elastoplasticity, viscoelasticity, theory of plates and stress analysis by hybrid methods. The fundamental solution of governing differential equations, integral representations of the displacement and temperature fields, regularized integral representations of the stress field and heat flux, boundary integral equations and boundary integro-differential equations are derived. Besides the mathematical foundations of the boundary integral method, the book deals with practical applications of this method. Most of the applications concentrate mainly on the computational problems of fracture mechanics. The method has been found to be very efficient in stress-intensity factor computations. Also included are developments made by the authors in the boundary integral formulation of thermoelasticity, micropolar elasticity, viscoelasticity, plate theory, hybrid method in elasticity and solution of crack problems. The solution of boundary-value problems of thermoelasticity and micropolar thermoelasticity is formulated for the first time as the solution of pure boundary problems. A new unified formulation of general crack problems is presented by integro-differential equations.