Author: Paolo Facci
Publisher: William Andrew
ISBN: 1455731528
Category : Technology & Engineering
Languages : en
Pages : 257
Book Description
Biomolecular Electronics – the electrical control of biological phenomena – is a scientific challenge that, once fully realized, will find a wide range of applications from electronics and computing to medicine and therapeutic techniques.This new arena of biomolecular electronics is approached using familiar concepts from many areas such as electrochemistry, device electronics and some mechanisms of gene expression level control. Practical techniques are explored by which electrical and electronic means can be used to control biological reactions and processes. Also, the current and future applications for this new and expanding field are discussed.This book is aimed at scientists and engineers involved in both research and commercial applications across fields including bioelectronics, bionanotechnology, electrochemistry and nanomedicine – providing a state-of-the-art survey of what's going on at the boundary between biology and electronic technology at the micro- and nano- scales, along with a suggestive insight into future possible developments. - Demystifies the science and applications of electrically-driven biological reactions - Explains how the techniques of bioelectronics and electrochemistry can be deployed as biological control technologies - Provides applications information for diverse areas from bio-electrochemistry to electrical control of gene expression levels
Biomolecular Electronics
Author: Paolo Facci
Publisher: William Andrew
ISBN: 1455731528
Category : Technology & Engineering
Languages : en
Pages : 257
Book Description
Biomolecular Electronics – the electrical control of biological phenomena – is a scientific challenge that, once fully realized, will find a wide range of applications from electronics and computing to medicine and therapeutic techniques.This new arena of biomolecular electronics is approached using familiar concepts from many areas such as electrochemistry, device electronics and some mechanisms of gene expression level control. Practical techniques are explored by which electrical and electronic means can be used to control biological reactions and processes. Also, the current and future applications for this new and expanding field are discussed.This book is aimed at scientists and engineers involved in both research and commercial applications across fields including bioelectronics, bionanotechnology, electrochemistry and nanomedicine – providing a state-of-the-art survey of what's going on at the boundary between biology and electronic technology at the micro- and nano- scales, along with a suggestive insight into future possible developments. - Demystifies the science and applications of electrically-driven biological reactions - Explains how the techniques of bioelectronics and electrochemistry can be deployed as biological control technologies - Provides applications information for diverse areas from bio-electrochemistry to electrical control of gene expression levels
Publisher: William Andrew
ISBN: 1455731528
Category : Technology & Engineering
Languages : en
Pages : 257
Book Description
Biomolecular Electronics – the electrical control of biological phenomena – is a scientific challenge that, once fully realized, will find a wide range of applications from electronics and computing to medicine and therapeutic techniques.This new arena of biomolecular electronics is approached using familiar concepts from many areas such as electrochemistry, device electronics and some mechanisms of gene expression level control. Practical techniques are explored by which electrical and electronic means can be used to control biological reactions and processes. Also, the current and future applications for this new and expanding field are discussed.This book is aimed at scientists and engineers involved in both research and commercial applications across fields including bioelectronics, bionanotechnology, electrochemistry and nanomedicine – providing a state-of-the-art survey of what's going on at the boundary between biology and electronic technology at the micro- and nano- scales, along with a suggestive insight into future possible developments. - Demystifies the science and applications of electrically-driven biological reactions - Explains how the techniques of bioelectronics and electrochemistry can be deployed as biological control technologies - Provides applications information for diverse areas from bio-electrochemistry to electrical control of gene expression levels
Biomolecular Electronics
Author: Nikolai Vsevolodov
Publisher: Springer Science & Business Media
ISBN: 146122442X
Category : Science
Languages : en
Pages : 287
Book Description
The properties of materials depend on the nature of the macromolecules, small molecules and inorganic components and the interfaces and interactions between them. Polymer chemistry and physics, and inorganic phase structure and density are major factors that influence the performance of materials. In addition, molecular recognition, organic-inorganic interfaces and many other types of interactions among components are key issues in determining the properties of materials for a wide range of applications. Materials require ments are becoming more and more specialized to meet increasingly demand ing needs, from specific environmental stresses to high performance or biomedical applications such as matrices for controlled release tissue scaf folds. One approach to meet these performance criteria is to achieve better control over the tailoring of the components and their interactions that govern the material properties. This goal is driving a great deal of ongoing research in material science laboratories. In addition, control at the molecular level of interactions between these components is a key in many instances in order to reach this goal since traditional approaches used to glue, stitch or fasten parts together can no longer suffice at these new levels of manipulation to achieve higher performance. In many cases, molecular recognition and self-assembly must begin to drive these processes to achieve the levels of control desired. This same need for improved performance has driven Nature over millenia to attain higher and higher complexity.
Publisher: Springer Science & Business Media
ISBN: 146122442X
Category : Science
Languages : en
Pages : 287
Book Description
The properties of materials depend on the nature of the macromolecules, small molecules and inorganic components and the interfaces and interactions between them. Polymer chemistry and physics, and inorganic phase structure and density are major factors that influence the performance of materials. In addition, molecular recognition, organic-inorganic interfaces and many other types of interactions among components are key issues in determining the properties of materials for a wide range of applications. Materials require ments are becoming more and more specialized to meet increasingly demand ing needs, from specific environmental stresses to high performance or biomedical applications such as matrices for controlled release tissue scaf folds. One approach to meet these performance criteria is to achieve better control over the tailoring of the components and their interactions that govern the material properties. This goal is driving a great deal of ongoing research in material science laboratories. In addition, control at the molecular level of interactions between these components is a key in many instances in order to reach this goal since traditional approaches used to glue, stitch or fasten parts together can no longer suffice at these new levels of manipulation to achieve higher performance. In many cases, molecular recognition and self-assembly must begin to drive these processes to achieve the levels of control desired. This same need for improved performance has driven Nature over millenia to attain higher and higher complexity.
Molecular Electronics
Author: Ioan Baldea
Publisher: CRC Press
ISBN: 9814613916
Category : Science
Languages : en
Pages : 453
Book Description
Molecular electronics, an emerging research field at the border of physics, chemistry, and material sciences, has attracted great interest in the last decade. To achieve the ultimate goal of designing molecular electronic devices with the desired functionality and experimental manipulation at the single-molecule level, theoretical understanding of
Publisher: CRC Press
ISBN: 9814613916
Category : Science
Languages : en
Pages : 453
Book Description
Molecular electronics, an emerging research field at the border of physics, chemistry, and material sciences, has attracted great interest in the last decade. To achieve the ultimate goal of designing molecular electronic devices with the desired functionality and experimental manipulation at the single-molecule level, theoretical understanding of
Molecular Electronics
Author: Gunter Mahler
Publisher: CRC Press
ISBN: 1000148467
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
Integrating molecular physics and information theory, this work presents molecular electronics as a method for information storage and retrieval that incorporates nanometer-scaled systems, uses microscopic particles and exploits the laws of quantum mechanics. It furnishes application examples employing properties of distinct molecules joined together to a macroscopic ensemble of virtually identical units.
Publisher: CRC Press
ISBN: 1000148467
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
Integrating molecular physics and information theory, this work presents molecular electronics as a method for information storage and retrieval that incorporates nanometer-scaled systems, uses microscopic particles and exploits the laws of quantum mechanics. It furnishes application examples employing properties of distinct molecules joined together to a macroscopic ensemble of virtually identical units.
Molecular Electronics, Circuits, and Processing Platforms
Author: Sergey Edward Lyshevski
Publisher: CRC Press
ISBN: 0429019106
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
When microelectronic devices replaced vacuum tubes, it marked a revolution in electronics that opened the way to the computer age. We are on the verge of witnessing another equally profound shift. As molecular devices replace semiconductors, we will achieve new levels of performance, functionality and capability that will hugely impact electronics, as well as signal processing and computing. Molecular Electronics, Circuits, and Processing Platforms guides you confidently into this emerging field. Helping you to forge into the molecular frontier, this book examines the various concepts, methods and technologies used to approach and solve a wide variety of problems. The author works from new devices to systems and platforms. He also covers device-level physics, system-level design, analysis, and advanced fabrication technologies. Explore the latest and emerging molecular, biomolecular, and nanoscale processing platforms for building the next generation of circuits, memories and computations. By examining both solved and open issues, this book thoroughly develops the basic theory and shows you how to apply this knowledge toward new developments and practical hardware implementation. Don’t fall behind. Let Molecular Electronics, Circuits, and Processing Platforms take you to the next level of electronics design and applications.
Publisher: CRC Press
ISBN: 0429019106
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
When microelectronic devices replaced vacuum tubes, it marked a revolution in electronics that opened the way to the computer age. We are on the verge of witnessing another equally profound shift. As molecular devices replace semiconductors, we will achieve new levels of performance, functionality and capability that will hugely impact electronics, as well as signal processing and computing. Molecular Electronics, Circuits, and Processing Platforms guides you confidently into this emerging field. Helping you to forge into the molecular frontier, this book examines the various concepts, methods and technologies used to approach and solve a wide variety of problems. The author works from new devices to systems and platforms. He also covers device-level physics, system-level design, analysis, and advanced fabrication technologies. Explore the latest and emerging molecular, biomolecular, and nanoscale processing platforms for building the next generation of circuits, memories and computations. By examining both solved and open issues, this book thoroughly develops the basic theory and shows you how to apply this knowledge toward new developments and practical hardware implementation. Don’t fall behind. Let Molecular Electronics, Circuits, and Processing Platforms take you to the next level of electronics design and applications.
Nano and Molecular Electronics Handbook
Author: Sergey Edward Lyshevski
Publisher: CRC Press
ISBN: 1420008145
Category : Technology & Engineering
Languages : en
Pages : 931
Book Description
There are fundamental and technological limits of conventional microfabrication and microelectronics. Scaling down conventional devices and attempts to develop novel topologies and architectures will soon be ineffective or unachievable at the device and system levels to ensure desired performance. Forward-looking experts continue to search for new paradigms to carry the field beyond the age of microelectronics, and molecular electronics is one of the most promising candidates. The Nano and Molecular Electronics Handbook surveys the current state of this exciting, emerging field and looks toward future developments and opportunities. Molecular and Nano Electronics Explained Explore the fundamentals of device physics, synthesis, and design of molecular processing platforms and molecular integrated circuits within three-dimensional topologies, organizations, and architectures as well as bottom-up fabrication utilizing quantum effects and unique phenomena. Technology in Progress Stay current with the latest results and practical solutions realized for nanoscale and molecular electronics as well as biomolecular electronics and memories. Learn design concepts, device-level modeling, simulation methods, and fabrication technologies used for today's applications and beyond. Reports from the Front Lines of Research Expert innovators discuss the results of cutting-edge research and provide informed and insightful commentary on where this new paradigm will lead. The Nano and Molecular Electronics Handbook ranks among the most complete and authoritative guides to the past, present, and future of this revolutionary area of theory and technology.
Publisher: CRC Press
ISBN: 1420008145
Category : Technology & Engineering
Languages : en
Pages : 931
Book Description
There are fundamental and technological limits of conventional microfabrication and microelectronics. Scaling down conventional devices and attempts to develop novel topologies and architectures will soon be ineffective or unachievable at the device and system levels to ensure desired performance. Forward-looking experts continue to search for new paradigms to carry the field beyond the age of microelectronics, and molecular electronics is one of the most promising candidates. The Nano and Molecular Electronics Handbook surveys the current state of this exciting, emerging field and looks toward future developments and opportunities. Molecular and Nano Electronics Explained Explore the fundamentals of device physics, synthesis, and design of molecular processing platforms and molecular integrated circuits within three-dimensional topologies, organizations, and architectures as well as bottom-up fabrication utilizing quantum effects and unique phenomena. Technology in Progress Stay current with the latest results and practical solutions realized for nanoscale and molecular electronics as well as biomolecular electronics and memories. Learn design concepts, device-level modeling, simulation methods, and fabrication technologies used for today's applications and beyond. Reports from the Front Lines of Research Expert innovators discuss the results of cutting-edge research and provide informed and insightful commentary on where this new paradigm will lead. The Nano and Molecular Electronics Handbook ranks among the most complete and authoritative guides to the past, present, and future of this revolutionary area of theory and technology.
Molecular Electronics: Bio-sensors and Bio-computers
Author: L. Barsanti
Publisher: Springer Science & Business Media
ISBN: 9401001413
Category : Science
Languages : en
Pages : 541
Book Description
How fast and powerful can computers become? Will it be possible someday to create artificial brains that have intellectual capabilities comparable to those of human beings? The answers to these questions depend to a very great extent on a single factor: how small and dense we can make computer circuits. Very recently, scientists have achieved revolutionary advances that may very well radically change the future of computing. There are significant advantages to using biological molecules in a new computational paradigm, since nature has solved similar problems to those encountered in harnessing organic molecules to perform data manipulation. Biomolecules could be used as photonic devices in holography, as spatial light modulators, in neural network optical computing, as nonlinear optical devices, and as optical memories. Such computers may use a billion times less energy than electronic computers, while storing data in a trillionth of the space, while also being highly parallel. Research projects implemented by national and international groups have produced a large amount of data from multidisciplinary work, ranging from physics and engineering to chemistry and biology.
Publisher: Springer Science & Business Media
ISBN: 9401001413
Category : Science
Languages : en
Pages : 541
Book Description
How fast and powerful can computers become? Will it be possible someday to create artificial brains that have intellectual capabilities comparable to those of human beings? The answers to these questions depend to a very great extent on a single factor: how small and dense we can make computer circuits. Very recently, scientists have achieved revolutionary advances that may very well radically change the future of computing. There are significant advantages to using biological molecules in a new computational paradigm, since nature has solved similar problems to those encountered in harnessing organic molecules to perform data manipulation. Biomolecules could be used as photonic devices in holography, as spatial light modulators, in neural network optical computing, as nonlinear optical devices, and as optical memories. Such computers may use a billion times less energy than electronic computers, while storing data in a trillionth of the space, while also being highly parallel. Research projects implemented by national and international groups have produced a large amount of data from multidisciplinary work, ranging from physics and engineering to chemistry and biology.
Molecular Electronics
Author: F.T. Hong
Publisher: Springer Science & Business Media
ISBN: 146157482X
Category : Science
Languages : en
Pages : 441
Book Description
The dream of developing a biocomputer should not be dismissed as a sheer fantasy. Although there is naturally some doubt as to whether it is possible to design a computer using carbon-based components as in living organisms, instead of silicon-based components as in existing computers, the fact that an average brain often outperforms the most sophisticated computer in terms of the complexity of tasks, if not in terms of speed, is a living testimony to this possibility. The remaining question is to what extent a biocomputer can mimic a living organism and whether it is possible to design and fabri cate such a biocomputer within the foreseeable future. This volume does not attempt to provide immediate and exact answers to these questions but instead attempts to provide a vision and a progress report of the initial efforts. This volume is mainly a collection of papers presented at the Symposium on Molecular Electronics - Biosensors and Biocomputers, sponsored by the Divi sion of Biotechnology, Health and Environment of the Fine Particle Society, held from July 19-22, 1989 at the Society's 19th Annual Meeting in Santa Clara, California. Also included are articles contributed by those who planned to attend the conference but were unable to do so. The emergence of the field of molecular electronics is largely the consequence of one person's crusade, that of Forrest L. Carter.
Publisher: Springer Science & Business Media
ISBN: 146157482X
Category : Science
Languages : en
Pages : 441
Book Description
The dream of developing a biocomputer should not be dismissed as a sheer fantasy. Although there is naturally some doubt as to whether it is possible to design a computer using carbon-based components as in living organisms, instead of silicon-based components as in existing computers, the fact that an average brain often outperforms the most sophisticated computer in terms of the complexity of tasks, if not in terms of speed, is a living testimony to this possibility. The remaining question is to what extent a biocomputer can mimic a living organism and whether it is possible to design and fabri cate such a biocomputer within the foreseeable future. This volume does not attempt to provide immediate and exact answers to these questions but instead attempts to provide a vision and a progress report of the initial efforts. This volume is mainly a collection of papers presented at the Symposium on Molecular Electronics - Biosensors and Biocomputers, sponsored by the Divi sion of Biotechnology, Health and Environment of the Fine Particle Society, held from July 19-22, 1989 at the Society's 19th Annual Meeting in Santa Clara, California. Also included are articles contributed by those who planned to attend the conference but were unable to do so. The emergence of the field of molecular electronics is largely the consequence of one person's crusade, that of Forrest L. Carter.
Molecular Electronics: An Introduction To Theory And Experiment (2nd Edition)
Author: Elke Scheer
Publisher: World Scientific
ISBN: 9813226048
Category : Technology & Engineering
Languages : en
Pages : 846
Book Description
Molecular Electronics is self-contained and unified in its presentation. It can be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included in this new edition are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.
Publisher: World Scientific
ISBN: 9813226048
Category : Technology & Engineering
Languages : en
Pages : 846
Book Description
Molecular Electronics is self-contained and unified in its presentation. It can be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included in this new edition are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.
Introductory Bioelectronics
Author: Ronald R. Pethig
Publisher: John Wiley & Sons
ISBN: 1119970873
Category : Science
Languages : en
Pages : 469
Book Description
Bioelectronics is a rich field of research involving the application of electronics engineering principles to biology, medicine, and the health sciences. With its interdisciplinary nature, bioelectronics spans state-of-the-art research at the interface between the life sciences, engineering and physical sciences. Introductory Bioelectronics offers a concise overview of the field and teaches the fundamentals of biochemical, biophysical, electrical, and physiological concepts relevant to bioelectronics. It is the first book to bring together these various topics, and to explain the basic theory and practical applications at an introductory level. The authors describe and contextualise the science by examining recent research and commercial applications. They also cover the design methods and forms of instrumentation that are required in the application of bioelectronics technology. The result is a unique book with the following key features: an interdisciplinary approach, which develops theory through practical examples and clinical applications, and delivers the necessary biological knowledge from an electronic engineer’s perspective a problem section in each chapter that readers can use for self-assessment, with model answers given at the end of the book along with references to key scientific publications discussions of new developments in the bioelectronics and biosensors fields, such as microfluidic devices and nanotechnology Supplying the tools to succeed, this text is the best resource for engineering and physical sciences students in bioelectronics, biomedical engineering and micro/nano-engineering. Not only that, it is also a resource for researchers without formal training in biology, who are entering PhD programmes or working on industrial projects in these areas.
Publisher: John Wiley & Sons
ISBN: 1119970873
Category : Science
Languages : en
Pages : 469
Book Description
Bioelectronics is a rich field of research involving the application of electronics engineering principles to biology, medicine, and the health sciences. With its interdisciplinary nature, bioelectronics spans state-of-the-art research at the interface between the life sciences, engineering and physical sciences. Introductory Bioelectronics offers a concise overview of the field and teaches the fundamentals of biochemical, biophysical, electrical, and physiological concepts relevant to bioelectronics. It is the first book to bring together these various topics, and to explain the basic theory and practical applications at an introductory level. The authors describe and contextualise the science by examining recent research and commercial applications. They also cover the design methods and forms of instrumentation that are required in the application of bioelectronics technology. The result is a unique book with the following key features: an interdisciplinary approach, which develops theory through practical examples and clinical applications, and delivers the necessary biological knowledge from an electronic engineer’s perspective a problem section in each chapter that readers can use for self-assessment, with model answers given at the end of the book along with references to key scientific publications discussions of new developments in the bioelectronics and biosensors fields, such as microfluidic devices and nanotechnology Supplying the tools to succeed, this text is the best resource for engineering and physical sciences students in bioelectronics, biomedical engineering and micro/nano-engineering. Not only that, it is also a resource for researchers without formal training in biology, who are entering PhD programmes or working on industrial projects in these areas.