Author: Max L. Berkowitz
Publisher: CRC Press
ISBN: 1351060309
Category : Science
Languages : en
Pages : 241
Book Description
Due to recent advancements in the development of numerical algorithms and computational hardware, computer simulations of biological membranes, often requiring use of substantial computational resources, are now reaching a mature stage. Since molecular processes in membranes occur on a multitude of spatial and time scales, molecular simulations of membranes can also serve as a testing ground for use of multi-scale simulation techniques. This book addresses some of the important issues related to understanding properties and behavior of model biological membranes and it Shows how simulations improve our understanding of biological membranes and makes connections with experimental results. Presents a careful discussion of the force fields used in the membrane simulations including detailed all-atom fields and coarse-grained fields. Presents a continuum description of membranes. Discusses a variety of issues such as influence of membrane surfaces on properties of water, interaction between membranes across water, nanoparticle permeation across the membrane, action of anesthetics and creation of inhomogeneous regions in membranes. Discusses important methodological issues when using simulations to examine phenomena such as pore creation and permeation across membranes. Discusses progress recently achieved in modeling bacterial membranes. It will be a valuable resource for graduate students, researchers and instructors in biochemistry, biophysics, pharmacology, physiology, and computational biology.
Biomembrane Simulations
Biomembrane Frontiers
Author: Thomas Jue
Publisher: Springer Science & Business Media
ISBN: 160761314X
Category : Science
Languages : en
Pages : 337
Book Description
This is the second book in the Handbook of Modern Biophysics series, dedicated to fundamental topics and new applications in biophysics. This book on biomembranes covers theory and application and includes problem sets, references and guides for further study.
Publisher: Springer Science & Business Media
ISBN: 160761314X
Category : Science
Languages : en
Pages : 337
Book Description
This is the second book in the Handbook of Modern Biophysics series, dedicated to fundamental topics and new applications in biophysics. This book on biomembranes covers theory and application and includes problem sets, references and guides for further study.
Molecular Simulations and Biomembranes
Author: Mark S. P. Sansom
Publisher: Royal Society of Chemistry
ISBN: 0854041893
Category : Science
Languages : en
Pages : 272
Book Description
Plugging a yawning gap in the literature, this work offers a much-needed update on current methods and applications, as well as highlighting recent advances in the way computer simulation can be applied to the field of membranes and membrane proteins.
Publisher: Royal Society of Chemistry
ISBN: 0854041893
Category : Science
Languages : en
Pages : 272
Book Description
Plugging a yawning gap in the literature, this work offers a much-needed update on current methods and applications, as well as highlighting recent advances in the way computer simulation can be applied to the field of membranes and membrane proteins.
Advances in Biomembranes and Lipid Self-Assembly
Author:
Publisher: Academic Press
ISBN: 0128050802
Category : Science
Languages : en
Pages : 224
Book Description
The Elsevier book series Advances in Biomembranes and Lipid Self-Assembly (previously titled Advances in Planar Lipid Bilayers and Liposomes), provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes, and lipid self-assemblies from the micro- to the nanoscale. Planar lipid bilayers are widely studied due to their ubiquity in nature and find their application in the formulation of biomimetic model membranes and in the design of artificial dispersion of liposomes. Moreover, lipids self-assemble into a wide range of other structures including micelles and the liquid crystalline hexagonal and cubic phases. Consensus has been reached that curved membrane phases do play an important role in nature as well, especially in dynamic processes such as vesicles fusion and cell communication. Self-assembled lipid structures have enormous potential as dynamic materials ranging from artificial lipid membranes to cell membranes, from biosensing to controlled drug delivery, from pharmaceutical formulations to novel food products to mention a few. An assortment of chapters in this volume represents both original research as well as comprehensive reviews written by world leading experts and young researchers. - Surveys recent theoretical and experimental results on lipid micro- and nanostructures - Presents potential uses of applications like clinically relevant diagnostic and therapeutic procedures, biotechnology, pharmaceutical engineering, and food products - Provides both original research as well as comprehensive reviews written by world leading experts and young researchers - Provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes, and lipid self-assemblies from the micro- to the nanoscale.
Publisher: Academic Press
ISBN: 0128050802
Category : Science
Languages : en
Pages : 224
Book Description
The Elsevier book series Advances in Biomembranes and Lipid Self-Assembly (previously titled Advances in Planar Lipid Bilayers and Liposomes), provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes, and lipid self-assemblies from the micro- to the nanoscale. Planar lipid bilayers are widely studied due to their ubiquity in nature and find their application in the formulation of biomimetic model membranes and in the design of artificial dispersion of liposomes. Moreover, lipids self-assemble into a wide range of other structures including micelles and the liquid crystalline hexagonal and cubic phases. Consensus has been reached that curved membrane phases do play an important role in nature as well, especially in dynamic processes such as vesicles fusion and cell communication. Self-assembled lipid structures have enormous potential as dynamic materials ranging from artificial lipid membranes to cell membranes, from biosensing to controlled drug delivery, from pharmaceutical formulations to novel food products to mention a few. An assortment of chapters in this volume represents both original research as well as comprehensive reviews written by world leading experts and young researchers. - Surveys recent theoretical and experimental results on lipid micro- and nanostructures - Presents potential uses of applications like clinically relevant diagnostic and therapeutic procedures, biotechnology, pharmaceutical engineering, and food products - Provides both original research as well as comprehensive reviews written by world leading experts and young researchers - Provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes, and lipid self-assemblies from the micro- to the nanoscale.
Plasma Membrane Shaping
Author: Shiro Suetsugu
Publisher: Academic Press
ISBN: 0323899196
Category : Science
Languages : en
Pages : 469
Book Description
Plasma Membrane Shaping summarizes current knowledge on how cells shape their membrane. Organized in four sections, the book opens with a broad overview of the plasma membrane, its composition, usual shapes and substructures, Actin/WASP/arp2/3 structures, BAR domains, and Ankyrin repeat domains, dynamin, and phospholipid signaling. Other sections cover the shaping of the plasma membrane for transport processes, discussions on exosomes, microvesicles, and endosomes, clathrin-coated pits, caveolae, and other endocytic pits, membrane deformation for cell movement, and some of the most current dry and wet lab research techniques to investigate cellular membrane shaping. This is an ideal resource for new researchers coming into this area as well as for graduate students. The methods section will be of interest to both microscopists and computer scientists dedicated to the visualization, data collection, and analysis of plasma membrane shaping experiments. - Covers membrane shaping for both cytosis and cell movement - Includes dry and wet lab research methods of plasma membrane shaping - Describes the molecular machinery involved with protein and lipid balance in the plasma membrane - Presents the coordination of cellular structures involved in cell deformation and motion
Publisher: Academic Press
ISBN: 0323899196
Category : Science
Languages : en
Pages : 469
Book Description
Plasma Membrane Shaping summarizes current knowledge on how cells shape their membrane. Organized in four sections, the book opens with a broad overview of the plasma membrane, its composition, usual shapes and substructures, Actin/WASP/arp2/3 structures, BAR domains, and Ankyrin repeat domains, dynamin, and phospholipid signaling. Other sections cover the shaping of the plasma membrane for transport processes, discussions on exosomes, microvesicles, and endosomes, clathrin-coated pits, caveolae, and other endocytic pits, membrane deformation for cell movement, and some of the most current dry and wet lab research techniques to investigate cellular membrane shaping. This is an ideal resource for new researchers coming into this area as well as for graduate students. The methods section will be of interest to both microscopists and computer scientists dedicated to the visualization, data collection, and analysis of plasma membrane shaping experiments. - Covers membrane shaping for both cytosis and cell movement - Includes dry and wet lab research methods of plasma membrane shaping - Describes the molecular machinery involved with protein and lipid balance in the plasma membrane - Presents the coordination of cellular structures involved in cell deformation and motion
Biomedical Applications of Biophysics
Author: Thomas Jue
Publisher: Springer Science & Business Media
ISBN: 160327233X
Category : Science
Languages : en
Pages : 249
Book Description
In keeping with goal and style of the Handbook in Modern Biophysics series, the proposed book will maintain a chapter structure that contains two parts: concepts and biological application. The book also integrates all the chapters into a smooth, continuous discourse. The first and second chapters establish the mathematical methods and theoretical framework underpinning the different topics in the rest if the book. Other chapters will use the theoretical framework as a basis to discuss optical and NMR approaches. Each chapter will contain innovative didactic elements that facilitate teaching, self-study, and research preparation (key points, summary, exercise, references).
Publisher: Springer Science & Business Media
ISBN: 160327233X
Category : Science
Languages : en
Pages : 249
Book Description
In keeping with goal and style of the Handbook in Modern Biophysics series, the proposed book will maintain a chapter structure that contains two parts: concepts and biological application. The book also integrates all the chapters into a smooth, continuous discourse. The first and second chapters establish the mathematical methods and theoretical framework underpinning the different topics in the rest if the book. Other chapters will use the theoretical framework as a basis to discuss optical and NMR approaches. Each chapter will contain innovative didactic elements that facilitate teaching, self-study, and research preparation (key points, summary, exercise, references).
Biophysical Approaches for the Study of Membrane Structure Part B
Author:
Publisher: Elsevier
ISBN: 0443295670
Category : Science
Languages : en
Pages : 630
Book Description
Biophysical Approaches for the Study of Membrane Structure, Part B, Volume 701 explores lipid membrane asymmetry and lateral heterogeneity. A burst of recent research has shown that bilayers whose leaflets differ in their physical properties—such as composition, phase state, or lateral stress—exhibit many fascinating new characteristics, but also pose a host of challenges related to their creation, characterization, simulation, and theoretical description. Chapters in this new release include Characterization of domain formation in complex membranes: Analyzing the bending modulus from simulations of complex membranes, The density-threshold affinity: Calculating lipid binding affinities from unbiased Coarse-Grain Molecular Dynamics simulations, and much more.Additional sections cover Uncertainty quantification for trans-membrane stresses and moments from simulation, Using molecular dynamics simulations to generate small-angle scattering curves and cryo-EM images of proteoliposomes, Binary Bilayer Simulations for Partitioning Within Membranes, Modeling Asymmetric Cell Membranes at All-atom Resolution, Multiscale remodeling of biomembranes and vesicles, Building complex membranes with Martini 3, Predicting lipid sorting in curved bilayer membranes, Simulating asymmetric membranes using P21 periodic boundary conditions, and many other interesting topics. - Explore the state-of-the-art of lipid membrane asymmetry - Covers experimental, theoretical, and computational techniques to create and characterize asymmetric lipid membranes - Teaches how these kinds of approaches create and characterize laterally inhomogeneous membranes
Publisher: Elsevier
ISBN: 0443295670
Category : Science
Languages : en
Pages : 630
Book Description
Biophysical Approaches for the Study of Membrane Structure, Part B, Volume 701 explores lipid membrane asymmetry and lateral heterogeneity. A burst of recent research has shown that bilayers whose leaflets differ in their physical properties—such as composition, phase state, or lateral stress—exhibit many fascinating new characteristics, but also pose a host of challenges related to their creation, characterization, simulation, and theoretical description. Chapters in this new release include Characterization of domain formation in complex membranes: Analyzing the bending modulus from simulations of complex membranes, The density-threshold affinity: Calculating lipid binding affinities from unbiased Coarse-Grain Molecular Dynamics simulations, and much more.Additional sections cover Uncertainty quantification for trans-membrane stresses and moments from simulation, Using molecular dynamics simulations to generate small-angle scattering curves and cryo-EM images of proteoliposomes, Binary Bilayer Simulations for Partitioning Within Membranes, Modeling Asymmetric Cell Membranes at All-atom Resolution, Multiscale remodeling of biomembranes and vesicles, Building complex membranes with Martini 3, Predicting lipid sorting in curved bilayer membranes, Simulating asymmetric membranes using P21 periodic boundary conditions, and many other interesting topics. - Explore the state-of-the-art of lipid membrane asymmetry - Covers experimental, theoretical, and computational techniques to create and characterize asymmetric lipid membranes - Teaches how these kinds of approaches create and characterize laterally inhomogeneous membranes
Functional Heterogeneities in Biomembranes
Author: Rainer A. Böckmann
Publisher: Frontiers Media SA
ISBN: 2889712486
Category : Science
Languages : en
Pages : 372
Book Description
Publisher: Frontiers Media SA
ISBN: 2889712486
Category : Science
Languages : en
Pages : 372
Book Description
Multiresponsive Behavior of Biomembranes and Giant Vesicles
Author:
Publisher: Academic Press
ISBN: 0128174846
Category : Science
Languages : en
Pages : 330
Book Description
Biomembranes consist of molecular bilayers with many lipid and protein components. The fluidity of these bilayers allows them to respond to different environmental cues by changing their local molecular composition as well as their shape and topology. On the nanometer scale, this multi-responsive behavior can be studied by molecular dynamics simulations, which provide both snapshots and movies of the bilayer conformations. The general conceptual framework for these simulations is provided by the theory of curvature elasticity. The latter theory also explains the behavior of giant vesicles as observed by optical microscopy on the micrometer scale. The present volume describes new insights as obtained from recent developments in analytical theory, computer simulations, and experimental approaches. The seven chapters of the volume are arranged in a bottom-up manner from smaller to larger scales. These chapters address the refined molecular dynamics and multiscale modeling of biomembranes, their morphological complexity and adhesion, the engulfment and endocytosis of nanoparticles, the fusion of giant unilamellar vesicles, as well as recent advances in microfluidic technology applied to model membranes. - Bridging the gap between lipid molecules and giant unilamellar vesicles (GUVs) - Integrated view obtained from analytical theory, computer simulations, and experimental observations - Multiresponsive behavior and morphological complexity of biomembranes
Publisher: Academic Press
ISBN: 0128174846
Category : Science
Languages : en
Pages : 330
Book Description
Biomembranes consist of molecular bilayers with many lipid and protein components. The fluidity of these bilayers allows them to respond to different environmental cues by changing their local molecular composition as well as their shape and topology. On the nanometer scale, this multi-responsive behavior can be studied by molecular dynamics simulations, which provide both snapshots and movies of the bilayer conformations. The general conceptual framework for these simulations is provided by the theory of curvature elasticity. The latter theory also explains the behavior of giant vesicles as observed by optical microscopy on the micrometer scale. The present volume describes new insights as obtained from recent developments in analytical theory, computer simulations, and experimental approaches. The seven chapters of the volume are arranged in a bottom-up manner from smaller to larger scales. These chapters address the refined molecular dynamics and multiscale modeling of biomembranes, their morphological complexity and adhesion, the engulfment and endocytosis of nanoparticles, the fusion of giant unilamellar vesicles, as well as recent advances in microfluidic technology applied to model membranes. - Bridging the gap between lipid molecules and giant unilamellar vesicles (GUVs) - Integrated view obtained from analytical theory, computer simulations, and experimental observations - Multiresponsive behavior and morphological complexity of biomembranes
Advanced Electroporation Techniques in Biology and Medicine
Author: Andrei G. Pakhomov
Publisher: CRC Press
ISBN: 1439819076
Category : Medical
Languages : en
Pages : 542
Book Description
A reflection of the intense study of the effects of electromagnetic fields on living tissues that has taken place during the last decades, Advanced Electroporation Techniques in Biology and Medicine summarizes most recent experimental findings and theories related to permeabilization of biomembranes by pulsed electric fields. Edited by experts and
Publisher: CRC Press
ISBN: 1439819076
Category : Medical
Languages : en
Pages : 542
Book Description
A reflection of the intense study of the effects of electromagnetic fields on living tissues that has taken place during the last decades, Advanced Electroporation Techniques in Biology and Medicine summarizes most recent experimental findings and theories related to permeabilization of biomembranes by pulsed electric fields. Edited by experts and