Author: Wolfgang Weigand
Publisher: John Wiley & Sons
ISBN: 3527664181
Category : Science
Languages : en
Pages : 438
Book Description
This book provides an overview of bioinspired metal-sulfur catalysis by covering structures, activities and model complexes of enzymes exhibiting metal sulphur moieties in their active center.
Bioinspired Catalysis
Author: Wolfgang Weigand
Publisher: John Wiley & Sons
ISBN: 3527664181
Category : Science
Languages : en
Pages : 438
Book Description
This book provides an overview of bioinspired metal-sulfur catalysis by covering structures, activities and model complexes of enzymes exhibiting metal sulphur moieties in their active center.
Publisher: John Wiley & Sons
ISBN: 3527664181
Category : Science
Languages : en
Pages : 438
Book Description
This book provides an overview of bioinspired metal-sulfur catalysis by covering structures, activities and model complexes of enzymes exhibiting metal sulphur moieties in their active center.
Copper Bioinorganic Chemistry: From Health To Bioinspired Catalysis
Author: Jalila Simaan
Publisher: World Scientific
ISBN: 9811269505
Category : Science
Languages : en
Pages : 273
Book Description
Bioinorganic chemistry is an interdisciplinary research field which centers on metals in biology. Over the past few decades, advances in chemistry, biology as well as in spectroscopic methods have shed light on the role of copper in human pathologies and allowed the growing discovery of copper-containing biological systems. Following this trend, much effort is being constantly chanelled towards understanding these fundamental biological processes or enzymes. In addition, chemists are developing molecules to target copper or copper enzymes as therapeutic tools. On the other hand, inspired by the function of biological systems, small molecular weight complexes inspired by the active site of copper enzymes are being prepared and studied. These bioinspired complexes can function both as mechanistic tools and as functional catalysts for oxidative transformations.The seven chapters in this book, contributed by internationally recognized authors cover recent developments on these aspects illustrated by interdisciplinary fields from biology, chemistry, spectroscopy to bioinspired catalysis. It contains aspects ranging from human health issues (copper homeostasis in bacteria and the development of molecules as anticancer or antibacterial agents) to bioinspired catalysis.
Publisher: World Scientific
ISBN: 9811269505
Category : Science
Languages : en
Pages : 273
Book Description
Bioinorganic chemistry is an interdisciplinary research field which centers on metals in biology. Over the past few decades, advances in chemistry, biology as well as in spectroscopic methods have shed light on the role of copper in human pathologies and allowed the growing discovery of copper-containing biological systems. Following this trend, much effort is being constantly chanelled towards understanding these fundamental biological processes or enzymes. In addition, chemists are developing molecules to target copper or copper enzymes as therapeutic tools. On the other hand, inspired by the function of biological systems, small molecular weight complexes inspired by the active site of copper enzymes are being prepared and studied. These bioinspired complexes can function both as mechanistic tools and as functional catalysts for oxidative transformations.The seven chapters in this book, contributed by internationally recognized authors cover recent developments on these aspects illustrated by interdisciplinary fields from biology, chemistry, spectroscopy to bioinspired catalysis. It contains aspects ranging from human health issues (copper homeostasis in bacteria and the development of molecules as anticancer or antibacterial agents) to bioinspired catalysis.
Bioinspiration and Biomimicry in Chemistry
Author: Gerhard Swiegers
Publisher: John Wiley & Sons
ISBN: 1118310071
Category : Science
Languages : en
Pages : 532
Book Description
Can we emulate nature's technology in chemistry? Through billions of years of evolution, Nature has generated some remarkable systems and substances that have made life on earth what it is today. Increasingly, scientists are seeking to mimic Nature's systems and processes in the lab in order to harness the power of Nature for the benefit of society. Bioinspiration and Biomimicry in Chemistry explores the chemistry of Nature and how we can replicate what Nature does in abiological settings. Specifically, the book focuses on wholly artificial, man-made systems that employ or are inspired by principles of Nature, but which do not use materials of biological origin. Beginning with a general overview of the concept of bioinspiration and biomimicry in chemistry, the book tackles such topics as: Bioinspired molecular machines Bioinspired catalysis Biomimetic amphiphiles and vesicles Biomimetic principles in macromolecular science Biomimetic cavities and bioinspired receptors Biomimicry in organic synthesis Written by a team of leading international experts, the contributed chapters collectively lay the groundwork for a new generation of environmentally friendly and sustainable materials, pharmaceuticals, and technologies. Readers will discover the latest advances in our ability to replicate natural systems and materials as well as the many impediments that remain, proving how much we still need to learn about how Nature works. Bioinspiration and Biomimicry in Chemistry is recommended for students and researchers in all realms of chemistry. Addressing how scientists are working to reverse engineer Nature in all areas of chemical research, the book is designed to stimulate new discussion and research in this exciting and promising field.
Publisher: John Wiley & Sons
ISBN: 1118310071
Category : Science
Languages : en
Pages : 532
Book Description
Can we emulate nature's technology in chemistry? Through billions of years of evolution, Nature has generated some remarkable systems and substances that have made life on earth what it is today. Increasingly, scientists are seeking to mimic Nature's systems and processes in the lab in order to harness the power of Nature for the benefit of society. Bioinspiration and Biomimicry in Chemistry explores the chemistry of Nature and how we can replicate what Nature does in abiological settings. Specifically, the book focuses on wholly artificial, man-made systems that employ or are inspired by principles of Nature, but which do not use materials of biological origin. Beginning with a general overview of the concept of bioinspiration and biomimicry in chemistry, the book tackles such topics as: Bioinspired molecular machines Bioinspired catalysis Biomimetic amphiphiles and vesicles Biomimetic principles in macromolecular science Biomimetic cavities and bioinspired receptors Biomimicry in organic synthesis Written by a team of leading international experts, the contributed chapters collectively lay the groundwork for a new generation of environmentally friendly and sustainable materials, pharmaceuticals, and technologies. Readers will discover the latest advances in our ability to replicate natural systems and materials as well as the many impediments that remain, proving how much we still need to learn about how Nature works. Bioinspiration and Biomimicry in Chemistry is recommended for students and researchers in all realms of chemistry. Addressing how scientists are working to reverse engineer Nature in all areas of chemical research, the book is designed to stimulate new discussion and research in this exciting and promising field.
Supramolecular Catalysis
Author: Piet W.N.M. van Leeuwen
Publisher: John Wiley & Sons
ISBN: 3527832041
Category : Technology & Engineering
Languages : en
Pages : 708
Book Description
Supramolecular Catalysis Provides a timely and detailed overview of the expanding field of supramolecular catalysis The subdiscpline of supramolecular catalysis has expanded in recent years, benefiting from the development of homogeneous catalysis and supramolecular chemistry. Supramolecular catalysis allows chemists to design custom-tailored metal and organic catalysts by devising non-covalent interactions between the various components of the reaction. Edited by two world-renowned researchers, Supramolecular Catalysis: New Directions and Developments summarizes the most significant developments in the dynamic, interdisciplinary field. Contributions from an international panel of more than forty experts address a broad range of topics covering both organic and metal catalysts, including emergent catalysis by self-replicating molecules, switchable catalysis using allosteric effects, supramolecular helical catalysts, and transition metal catalysis in confined spaces. This authoritative and up-to-date volume: Covers ligand-ligand interactions, assembled multi-component catalysts, ligand-substrate interactions, and supramolecular organocatalysis and non-classical interactions Presents recent work on supramolecular catalysis in water, supramolecular allosteric catalysis, and catalysis promoted by discrete cages, capsules, and other confined environments Highlights current research trends and discusses the future of supramolecular catalysis Includes full references and numerous figures, tables, and color illustrations Supramolecular Catalysis: New Directions and Developments is essential reading for catalytic chemists, complex chemists, biochemists, polymer chemists, spectroscopists, and chemists working with organometallics.
Publisher: John Wiley & Sons
ISBN: 3527832041
Category : Technology & Engineering
Languages : en
Pages : 708
Book Description
Supramolecular Catalysis Provides a timely and detailed overview of the expanding field of supramolecular catalysis The subdiscpline of supramolecular catalysis has expanded in recent years, benefiting from the development of homogeneous catalysis and supramolecular chemistry. Supramolecular catalysis allows chemists to design custom-tailored metal and organic catalysts by devising non-covalent interactions between the various components of the reaction. Edited by two world-renowned researchers, Supramolecular Catalysis: New Directions and Developments summarizes the most significant developments in the dynamic, interdisciplinary field. Contributions from an international panel of more than forty experts address a broad range of topics covering both organic and metal catalysts, including emergent catalysis by self-replicating molecules, switchable catalysis using allosteric effects, supramolecular helical catalysts, and transition metal catalysis in confined spaces. This authoritative and up-to-date volume: Covers ligand-ligand interactions, assembled multi-component catalysts, ligand-substrate interactions, and supramolecular organocatalysis and non-classical interactions Presents recent work on supramolecular catalysis in water, supramolecular allosteric catalysis, and catalysis promoted by discrete cages, capsules, and other confined environments Highlights current research trends and discusses the future of supramolecular catalysis Includes full references and numerous figures, tables, and color illustrations Supramolecular Catalysis: New Directions and Developments is essential reading for catalytic chemists, complex chemists, biochemists, polymer chemists, spectroscopists, and chemists working with organometallics.
Bioinorganic Catalysis
Author: Jan Reedijk
Publisher: CRC Press
ISBN: 9780203908457
Category : Science
Languages : en
Pages : 628
Book Description
"Provides the latest research results and suggests new topics for interdisciplinary study of metal ions, catalysis, and biochemical systems. Second Edition highlights potential applications; includes new chapters on zinc and FeS clusters; presents new X-ray analysis of metalloenzymes; and more."
Publisher: CRC Press
ISBN: 9780203908457
Category : Science
Languages : en
Pages : 628
Book Description
"Provides the latest research results and suggests new topics for interdisciplinary study of metal ions, catalysis, and biochemical systems. Second Edition highlights potential applications; includes new chapters on zinc and FeS clusters; presents new X-ray analysis of metalloenzymes; and more."
CO2 Hydrogenation Catalysis
Author: Yuichiro Himeda
Publisher: John Wiley & Sons
ISBN: 3527346635
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
A guide to the effective catalysts and latest advances in CO2 conversion in chemicals and fuels Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO2 emissions to produce value-added chemicals. With contributions from an international team of experts on the topic, CO2 Hydrogenation Catalysis offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C2+ products. The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO2 hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book: Offers a unique review of effective catalysts and the latest advances in CO2 conversion Explores how to utilize CO2 emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromatics Includes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysis Highlights advances and challenges for future investigation Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers, CO2 Hydrogenation Catalysis offers a comprehensive resource to understanding how CO2 emissions can create value-added chemicals.
Publisher: John Wiley & Sons
ISBN: 3527346635
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
A guide to the effective catalysts and latest advances in CO2 conversion in chemicals and fuels Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO2 emissions to produce value-added chemicals. With contributions from an international team of experts on the topic, CO2 Hydrogenation Catalysis offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C2+ products. The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO2 hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book: Offers a unique review of effective catalysts and the latest advances in CO2 conversion Explores how to utilize CO2 emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromatics Includes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysis Highlights advances and challenges for future investigation Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers, CO2 Hydrogenation Catalysis offers a comprehensive resource to understanding how CO2 emissions can create value-added chemicals.
Chemical and Biochemical Catalysis for Next Generation Biofuels
Author: Blake A Simmons
Publisher: Royal Society of Chemistry
ISBN: 1782625879
Category : Science
Languages : en
Pages : 207
Book Description
The development of renewable and sustainable lignocellulosic biofuels is currently receiving worldwide attention and investment. Despite decades of research, there remain significant challenges to be overcome before these biofuels can be produced in large volumes at competitive prices. One obstacle is the lack of efficient and affordable catalytic systems to dissolve and hydrolyze polysaccharides into sugars. These sugars are then fed to microrganisms and fermented into biofuels. The price of these catalysts, be they biological, thermochemical, or chemical in nature, represent one of the largest costs in the conversion process. There are a number of catalytic schemes, each with their own advantages and disadvantages, available. This book presents a general yet substantial review of the most promising processes and the spectrum of biomass pretreatment, enzymes, chemical catalysts, and hybrid approaches of hydrolyzing biomass into fermentable sugars. It is the only currently available book that compares the biochemical, chemical, and thermochemical conversion processes to biofuel production.
Publisher: Royal Society of Chemistry
ISBN: 1782625879
Category : Science
Languages : en
Pages : 207
Book Description
The development of renewable and sustainable lignocellulosic biofuels is currently receiving worldwide attention and investment. Despite decades of research, there remain significant challenges to be overcome before these biofuels can be produced in large volumes at competitive prices. One obstacle is the lack of efficient and affordable catalytic systems to dissolve and hydrolyze polysaccharides into sugars. These sugars are then fed to microrganisms and fermented into biofuels. The price of these catalysts, be they biological, thermochemical, or chemical in nature, represent one of the largest costs in the conversion process. There are a number of catalytic schemes, each with their own advantages and disadvantages, available. This book presents a general yet substantial review of the most promising processes and the spectrum of biomass pretreatment, enzymes, chemical catalysts, and hybrid approaches of hydrolyzing biomass into fermentable sugars. It is the only currently available book that compares the biochemical, chemical, and thermochemical conversion processes to biofuel production.
Applied Homogeneous Catalysis with Organometallic Compounds
Author: Boy Cornils
Publisher: John Wiley & Sons
ISBN: 3527651756
Category : Science
Languages : en
Pages : 2120
Book Description
The completely revised third edition of this four-volume classic is fully updated and now includes such topics as as CH-activation and multicomponent reactions. It describes the most important reaction types, new methods and recent developments in catalysis. The internationally renowned editors and a plethora of international authors (including Nobel laureate R. Noyori) guarantee high quality content throughout the book. A "must read" for everyone in academia and industry working in this field.
Publisher: John Wiley & Sons
ISBN: 3527651756
Category : Science
Languages : en
Pages : 2120
Book Description
The completely revised third edition of this four-volume classic is fully updated and now includes such topics as as CH-activation and multicomponent reactions. It describes the most important reaction types, new methods and recent developments in catalysis. The internationally renowned editors and a plethora of international authors (including Nobel laureate R. Noyori) guarantee high quality content throughout the book. A "must read" for everyone in academia and industry working in this field.
Advances in Physical Organic Chemistry
Author:
Publisher: Academic Press
ISBN: 0128024291
Category : Science
Languages : en
Pages : 316
Book Description
Advances in Physical Organic Chemistry series of volumes is the definitive resource for authoritative reviews of work in physical organic chemistry. It aims to provide a valuable source of information not only for physical organic chemists applying their expertise to both novel and traditional problems but also for non-specialists across diverse areas who identify a physical organic component in their approach to research. Its hallmark is quantitative, molecular level understanding of phenomena across a diverse range of disciplines. - Reviews the application of quantitative and mathematical methods to help readers understand chemical problems - Provides the chemical community with authoritative and critical assessments of the many aspects of physical organic chemistry - Covers organic, organometallic, bioorganic, enzymes, and materials topics - The only regularly published resource for reviews in physical organic chemistry - Chapters are written by authoritative experts - Wide coverage of topics requiring a quantitative, molecular-level understanding of phenomena across a diverse range of disciplines
Publisher: Academic Press
ISBN: 0128024291
Category : Science
Languages : en
Pages : 316
Book Description
Advances in Physical Organic Chemistry series of volumes is the definitive resource for authoritative reviews of work in physical organic chemistry. It aims to provide a valuable source of information not only for physical organic chemists applying their expertise to both novel and traditional problems but also for non-specialists across diverse areas who identify a physical organic component in their approach to research. Its hallmark is quantitative, molecular level understanding of phenomena across a diverse range of disciplines. - Reviews the application of quantitative and mathematical methods to help readers understand chemical problems - Provides the chemical community with authoritative and critical assessments of the many aspects of physical organic chemistry - Covers organic, organometallic, bioorganic, enzymes, and materials topics - The only regularly published resource for reviews in physical organic chemistry - Chapters are written by authoritative experts - Wide coverage of topics requiring a quantitative, molecular-level understanding of phenomena across a diverse range of disciplines
Supramolecular Catalysis
Author: Piet W.N.M. van Leeuwen
Publisher: John Wiley & Sons
ISBN: 3527349022
Category : Technology & Engineering
Languages : en
Pages : 708
Book Description
Supramolecular Catalysis Provides a timely and detailed overview of the expanding field of supramolecular catalysis The subdiscpline of supramolecular catalysis has expanded in recent years, benefiting from the development of homogeneous catalysis and supramolecular chemistry. Supramolecular catalysis allows chemists to design custom-tailored metal and organic catalysts by devising non-covalent interactions between the various components of the reaction. Edited by two world-renowned researchers, Supramolecular Catalysis: New Directions and Developments summarizes the most significant developments in the dynamic, interdisciplinary field. Contributions from an international panel of more than forty experts address a broad range of topics covering both organic and metal catalysts, including emergent catalysis by self-replicating molecules, switchable catalysis using allosteric effects, supramolecular helical catalysts, and transition metal catalysis in confined spaces. This authoritative and up-to-date volume: Covers ligand-ligand interactions, assembled multi-component catalysts, ligand-substrate interactions, and supramolecular organocatalysis and non-classical interactions Presents recent work on supramolecular catalysis in water, supramolecular allosteric catalysis, and catalysis promoted by discrete cages, capsules, and other confined environments Highlights current research trends and discusses the future of supramolecular catalysis Includes full references and numerous figures, tables, and color illustrations Supramolecular Catalysis: New Directions and Developments is essential reading for catalytic chemists, complex chemists, biochemists, polymer chemists, spectroscopists, and chemists working with organometallics.
Publisher: John Wiley & Sons
ISBN: 3527349022
Category : Technology & Engineering
Languages : en
Pages : 708
Book Description
Supramolecular Catalysis Provides a timely and detailed overview of the expanding field of supramolecular catalysis The subdiscpline of supramolecular catalysis has expanded in recent years, benefiting from the development of homogeneous catalysis and supramolecular chemistry. Supramolecular catalysis allows chemists to design custom-tailored metal and organic catalysts by devising non-covalent interactions between the various components of the reaction. Edited by two world-renowned researchers, Supramolecular Catalysis: New Directions and Developments summarizes the most significant developments in the dynamic, interdisciplinary field. Contributions from an international panel of more than forty experts address a broad range of topics covering both organic and metal catalysts, including emergent catalysis by self-replicating molecules, switchable catalysis using allosteric effects, supramolecular helical catalysts, and transition metal catalysis in confined spaces. This authoritative and up-to-date volume: Covers ligand-ligand interactions, assembled multi-component catalysts, ligand-substrate interactions, and supramolecular organocatalysis and non-classical interactions Presents recent work on supramolecular catalysis in water, supramolecular allosteric catalysis, and catalysis promoted by discrete cages, capsules, and other confined environments Highlights current research trends and discusses the future of supramolecular catalysis Includes full references and numerous figures, tables, and color illustrations Supramolecular Catalysis: New Directions and Developments is essential reading for catalytic chemists, complex chemists, biochemists, polymer chemists, spectroscopists, and chemists working with organometallics.