Author: Richard Durbin
Publisher: Cambridge University Press
ISBN: 113945739X
Category : Science
Languages : en
Pages : 372
Book Description
Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.
Biological Sequence Analysis
Author: Richard Durbin
Publisher: Cambridge University Press
ISBN: 113945739X
Category : Science
Languages : en
Pages : 372
Book Description
Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.
Publisher: Cambridge University Press
ISBN: 113945739X
Category : Science
Languages : en
Pages : 372
Book Description
Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.
Bioinformatics: Sequence Alignment and Markov Models
Author: Kal Renganathan Sharma
Publisher: McGraw Hill Professional
ISBN: 0071593071
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
GET FULLY UP-TO-DATE ON BIOINFORMATICS-THE TECHNOLOGY OF THE 21ST CENTURY Bioinformatics showcases the latest developments in the field along with all the foundational information you'll need. It provides in-depth coverage of a wide range of autoimmune disorders and detailed analyses of suffix trees, plus late-breaking advances regarding biochips and genomes. Featuring helpful gene-finding algorithms, Bioinformatics offers key information on sequence alignment, HMMs, HMM applications, protein secondary structure, microarray techniques, and drug discovery and development. Helpful diagrams accompany mathematical equations throughout, and exercises appear at the end of each chapter to facilitate self-evaluation. This thorough, up-to-date resource features: Worked-out problems illustrating concepts and models End-of-chapter exercises for self-evaluation Material based on student feedback Illustrations that clarify difficult math problems A list of bioinformatics-related websites Bioinformatics covers: Sequence representation and alignment Hidden Markov models Applications of HMMs Gene finding Protein secondary structure prediction Microarray techniques Drug discovery and development Internet resources and public domain databases
Publisher: McGraw Hill Professional
ISBN: 0071593071
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
GET FULLY UP-TO-DATE ON BIOINFORMATICS-THE TECHNOLOGY OF THE 21ST CENTURY Bioinformatics showcases the latest developments in the field along with all the foundational information you'll need. It provides in-depth coverage of a wide range of autoimmune disorders and detailed analyses of suffix trees, plus late-breaking advances regarding biochips and genomes. Featuring helpful gene-finding algorithms, Bioinformatics offers key information on sequence alignment, HMMs, HMM applications, protein secondary structure, microarray techniques, and drug discovery and development. Helpful diagrams accompany mathematical equations throughout, and exercises appear at the end of each chapter to facilitate self-evaluation. This thorough, up-to-date resource features: Worked-out problems illustrating concepts and models End-of-chapter exercises for self-evaluation Material based on student feedback Illustrations that clarify difficult math problems A list of bioinformatics-related websites Bioinformatics covers: Sequence representation and alignment Hidden Markov models Applications of HMMs Gene finding Protein secondary structure prediction Microarray techniques Drug discovery and development Internet resources and public domain databases
Essential Bioinformatics
Author: Jin Xiong
Publisher: Cambridge University Press
ISBN: 113945062X
Category : Science
Languages : en
Pages : 360
Book Description
Essential Bioinformatics is a concise yet comprehensive textbook of bioinformatics, which provides a broad introduction to the entire field. Written specifically for a life science audience, the basics of bioinformatics are explained, followed by discussions of the state-of-the-art computational tools available to solve biological research problems. All key areas of bioinformatics are covered including biological databases, sequence alignment, genes and promoter prediction, molecular phylogenetics, structural bioinformatics, genomics and proteomics. The book emphasizes how computational methods work and compares the strengths and weaknesses of different methods. This balanced yet easily accessible text will be invaluable to students who do not have sophisticated computational backgrounds. Technical details of computational algorithms are explained with a minimum use of mathematical formulae; graphical illustrations are used in their place to aid understanding. The effective synthesis of existing literature as well as in-depth and up-to-date coverage of all key topics in bioinformatics make this an ideal textbook for all bioinformatics courses taken by life science students and for researchers wishing to develop their knowledge of bioinformatics to facilitate their own research.
Publisher: Cambridge University Press
ISBN: 113945062X
Category : Science
Languages : en
Pages : 360
Book Description
Essential Bioinformatics is a concise yet comprehensive textbook of bioinformatics, which provides a broad introduction to the entire field. Written specifically for a life science audience, the basics of bioinformatics are explained, followed by discussions of the state-of-the-art computational tools available to solve biological research problems. All key areas of bioinformatics are covered including biological databases, sequence alignment, genes and promoter prediction, molecular phylogenetics, structural bioinformatics, genomics and proteomics. The book emphasizes how computational methods work and compares the strengths and weaknesses of different methods. This balanced yet easily accessible text will be invaluable to students who do not have sophisticated computational backgrounds. Technical details of computational algorithms are explained with a minimum use of mathematical formulae; graphical illustrations are used in their place to aid understanding. The effective synthesis of existing literature as well as in-depth and up-to-date coverage of all key topics in bioinformatics make this an ideal textbook for all bioinformatics courses taken by life science students and for researchers wishing to develop their knowledge of bioinformatics to facilitate their own research.
Hidden Markov Models for Bioinformatics
Author: T. Koski
Publisher: Springer Science & Business Media
ISBN: 9781402001352
Category : Computers
Languages : en
Pages : 422
Book Description
The purpose of this book is to give a thorough and systematic introduction to probabilistic modeling in bioinformatics. The book contains a mathematically strict and extensive presentation of the kind of probabilistic models that have turned out to be useful in genome analysis. Questions of parametric inference, selection between model families, and various architectures are treated. Several examples are given of known architectures (e.g., profile HMM) used in genome analysis.
Publisher: Springer Science & Business Media
ISBN: 9781402001352
Category : Computers
Languages : en
Pages : 422
Book Description
The purpose of this book is to give a thorough and systematic introduction to probabilistic modeling in bioinformatics. The book contains a mathematically strict and extensive presentation of the kind of probabilistic models that have turned out to be useful in genome analysis. Questions of parametric inference, selection between model families, and various architectures are treated. Several examples are given of known architectures (e.g., profile HMM) used in genome analysis.
Problems and Solutions in Biological Sequence Analysis
Author: Mark Borodovsky
Publisher: Cambridge University Press
ISBN: 1139458124
Category : Science
Languages : en
Pages : 15
Book Description
This book is the first of its kind to provide a large collection of bioinformatics problems with accompanying solutions. Notably, the problem set includes all of the problems offered in Biological Sequence Analysis, by Durbin et al. (Cambridge, 1998), widely adopted as a required text for bioinformatics courses at leading universities worldwide. Although many of the problems included in Biological Sequence Analysis as exercises for its readers have been repeatedly used for homework and tests, no detailed solutions for the problems were available. Bioinformatics instructors had therefore frequently expressed a need for fully worked solutions and a larger set of problems for use on courses. This book provides just that: following the same structure as Biological Sequence Analysis and significantly extending the set of workable problems, it will facilitate a better understanding of the contents of the chapters in BSA and will help its readers develop problem-solving skills that are vitally important for conducting successful research in the growing field of bioinformatics. All of the material has been class-tested by the authors at Georgia Tech, where the first ever MSc degree program in Bioinformatics was held.
Publisher: Cambridge University Press
ISBN: 1139458124
Category : Science
Languages : en
Pages : 15
Book Description
This book is the first of its kind to provide a large collection of bioinformatics problems with accompanying solutions. Notably, the problem set includes all of the problems offered in Biological Sequence Analysis, by Durbin et al. (Cambridge, 1998), widely adopted as a required text for bioinformatics courses at leading universities worldwide. Although many of the problems included in Biological Sequence Analysis as exercises for its readers have been repeatedly used for homework and tests, no detailed solutions for the problems were available. Bioinformatics instructors had therefore frequently expressed a need for fully worked solutions and a larger set of problems for use on courses. This book provides just that: following the same structure as Biological Sequence Analysis and significantly extending the set of workable problems, it will facilitate a better understanding of the contents of the chapters in BSA and will help its readers develop problem-solving skills that are vitally important for conducting successful research in the growing field of bioinformatics. All of the material has been class-tested by the authors at Georgia Tech, where the first ever MSc degree program in Bioinformatics was held.
Genome-Scale Algorithm Design
Author: Veli Mäkinen
Publisher: Cambridge University Press
ISBN: 1009341219
Category : Computers
Languages : en
Pages : 470
Book Description
Guided by standard bioscience workflows in high-throughput sequencing analysis, this book for graduate students, researchers, and professionals in bioinformatics and computer science offers a unified presentation of genome-scale algorithms. This new edition covers the use of minimizers and other advanced data structures in pangenomics approaches.
Publisher: Cambridge University Press
ISBN: 1009341219
Category : Computers
Languages : en
Pages : 470
Book Description
Guided by standard bioscience workflows in high-throughput sequencing analysis, this book for graduate students, researchers, and professionals in bioinformatics and computer science offers a unified presentation of genome-scale algorithms. This new edition covers the use of minimizers and other advanced data structures in pangenomics approaches.
Simulation of Daily Streamflow
Author: Leo R. Beard
Publisher:
ISBN:
Category : Stream measurements
Languages : en
Pages : 20
Book Description
Publisher:
ISBN:
Category : Stream measurements
Languages : en
Pages : 20
Book Description
Statistical Methods in Bioinformatics
Author: Warren J. Ewens
Publisher: Springer Science & Business Media
ISBN: 0387400826
Category : Science
Languages : en
Pages : 616
Book Description
Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: "This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly." (Biometrics) "Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces." (Naturwissenschaften) "The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details." (Journal American Statistical Association) "The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book." (Metrika)
Publisher: Springer Science & Business Media
ISBN: 0387400826
Category : Science
Languages : en
Pages : 616
Book Description
Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: "This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly." (Biometrics) "Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces." (Naturwissenschaften) "The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details." (Journal American Statistical Association) "The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book." (Metrika)
Statistical Methods in Molecular Evolution
Author: Rasmus Nielsen
Publisher: Springer Science & Business Media
ISBN: 9780387223339
Category : Science
Languages : en
Pages : 528
Book Description
In the field of molecular evolution, inferences about past evolutionary events are made using molecular data from currently living species. With the availability of genomic data from multiple related species, molecular evolution has become one of the most active and fastest growing fields of study in genomics and bioinformatics. Most studies in molecular evolution rely heavily on statistical procedures based on stochastic process modelling and advanced computational methods including high-dimensional numerical optimization and Markov Chain Monte Carlo. This book provides an overview of the statistical theory and methods used in studies of molecular evolution. It includes an introductory section suitable for readers that are new to the field, a section discussing practical methods for data analysis, and more specialized sections discussing specific models and addressing statistical issues relating to estimation and model choice. The chapters are written by the leaders of field and they will take the reader from basic introductory material to the state-of-the-art statistical methods. This book is suitable for statisticians seeking to learn more about applications in molecular evolution and molecular evolutionary biologists with an interest in learning more about the theory behind the statistical methods applied in the field. The chapters of the book assume no advanced mathematical skills beyond basic calculus, although familiarity with basic probability theory will help the reader. Most relevant statistical concepts are introduced in the book in the context of their application in molecular evolution, and the book should be accessible for most biology graduate students with an interest in quantitative methods and theory. Rasmus Nielsen received his Ph.D. form the University of California at Berkeley in 1998 and after a postdoc at Harvard University, he assumed a faculty position in Statistical Genomics at Cornell University. He is currently an Ole Rømer Fellow at the University of Copenhagen and holds a Sloan Research Fellowship. His is an associate editor of the Journal of Molecular Evolution and has published more than fifty original papers in peer-reviewed journals on the topic of this book. From the reviews: "...Overall this is a very useful book in an area of increasing importance." Journal of the Royal Statistical Society "I find Statistical Methods in Molecular Evolution very interesting and useful. It delves into problems that were considered very difficult just several years ago...the book is likely to stimulate the interest of statisticians that are unaware of this exciting field of applications. It is my hope that it will also help the 'wet lab' molecular evolutionist to better understand mathematical and statistical methods." Marek Kimmel for the Journal of the American Statistical Association, September 2006 "Who should read this book? We suggest that anyone who deals with molecular data (who does not?) and anyone who asks evolutionary questions (who should not?) ought to consult the relevant chapters in this book." Dan Graur and Dror Berel for Biometrics, September 2006 "Coalescence theory facilitates the merger of population genetics theory with phylogenetic approaches, but still, there are mostly two camps: phylogeneticists and population geneticists. Only a few people are moving freely between them. Rasmus Nielsen is certainly one of these researchers, and his work so far has merged many population genetic and phylogenetic aspects of biological research under the umbrella of molecular evolution. Although Nielsen did not contribute a chapter to his book, his work permeates all its chapters. This book gives an overview of his interests and current achievements in molecular evolution. In short, this book should be on your bookshelf." Peter Beerli for Evolution, 60(2), 2006
Publisher: Springer Science & Business Media
ISBN: 9780387223339
Category : Science
Languages : en
Pages : 528
Book Description
In the field of molecular evolution, inferences about past evolutionary events are made using molecular data from currently living species. With the availability of genomic data from multiple related species, molecular evolution has become one of the most active and fastest growing fields of study in genomics and bioinformatics. Most studies in molecular evolution rely heavily on statistical procedures based on stochastic process modelling and advanced computational methods including high-dimensional numerical optimization and Markov Chain Monte Carlo. This book provides an overview of the statistical theory and methods used in studies of molecular evolution. It includes an introductory section suitable for readers that are new to the field, a section discussing practical methods for data analysis, and more specialized sections discussing specific models and addressing statistical issues relating to estimation and model choice. The chapters are written by the leaders of field and they will take the reader from basic introductory material to the state-of-the-art statistical methods. This book is suitable for statisticians seeking to learn more about applications in molecular evolution and molecular evolutionary biologists with an interest in learning more about the theory behind the statistical methods applied in the field. The chapters of the book assume no advanced mathematical skills beyond basic calculus, although familiarity with basic probability theory will help the reader. Most relevant statistical concepts are introduced in the book in the context of their application in molecular evolution, and the book should be accessible for most biology graduate students with an interest in quantitative methods and theory. Rasmus Nielsen received his Ph.D. form the University of California at Berkeley in 1998 and after a postdoc at Harvard University, he assumed a faculty position in Statistical Genomics at Cornell University. He is currently an Ole Rømer Fellow at the University of Copenhagen and holds a Sloan Research Fellowship. His is an associate editor of the Journal of Molecular Evolution and has published more than fifty original papers in peer-reviewed journals on the topic of this book. From the reviews: "...Overall this is a very useful book in an area of increasing importance." Journal of the Royal Statistical Society "I find Statistical Methods in Molecular Evolution very interesting and useful. It delves into problems that were considered very difficult just several years ago...the book is likely to stimulate the interest of statisticians that are unaware of this exciting field of applications. It is my hope that it will also help the 'wet lab' molecular evolutionist to better understand mathematical and statistical methods." Marek Kimmel for the Journal of the American Statistical Association, September 2006 "Who should read this book? We suggest that anyone who deals with molecular data (who does not?) and anyone who asks evolutionary questions (who should not?) ought to consult the relevant chapters in this book." Dan Graur and Dror Berel for Biometrics, September 2006 "Coalescence theory facilitates the merger of population genetics theory with phylogenetic approaches, but still, there are mostly two camps: phylogeneticists and population geneticists. Only a few people are moving freely between them. Rasmus Nielsen is certainly one of these researchers, and his work so far has merged many population genetic and phylogenetic aspects of biological research under the umbrella of molecular evolution. Although Nielsen did not contribute a chapter to his book, his work permeates all its chapters. This book gives an overview of his interests and current achievements in molecular evolution. In short, this book should be on your bookshelf." Peter Beerli for Evolution, 60(2), 2006
Computational Intelligence Methods for Bioinformatics and Biostatistics
Author: Francesco Masulli
Publisher: Springer
ISBN: 364214571X
Category : Science
Languages : en
Pages : 331
Book Description
Annotation. This book constitutes the thoroughly refereed post-conference proceedings of the Sixth International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2009, held in Genova, Italy, in October 2009. The revised 23 full papers presented were carefully reviewed and selected from 57 submissions. The main goal of the CIBB meetings is to provide a forum open to researchers from different disciplines to present and discuss problems concerning computational techniques in tools for bioinformatics, gene expression analysis and new perspectives in bioinformatics together with 4 special sessions on using game-theoretical tools in bioinformatics, combining Bayesian and machine learning approaches in bioinformatics: state of the art and future perspectives, data clustering and bioinformatics (DCB 2009) and on intelligent systems for medical decisions support (ISMDS 2009).
Publisher: Springer
ISBN: 364214571X
Category : Science
Languages : en
Pages : 331
Book Description
Annotation. This book constitutes the thoroughly refereed post-conference proceedings of the Sixth International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2009, held in Genova, Italy, in October 2009. The revised 23 full papers presented were carefully reviewed and selected from 57 submissions. The main goal of the CIBB meetings is to provide a forum open to researchers from different disciplines to present and discuss problems concerning computational techniques in tools for bioinformatics, gene expression analysis and new perspectives in bioinformatics together with 4 special sessions on using game-theoretical tools in bioinformatics, combining Bayesian and machine learning approaches in bioinformatics: state of the art and future perspectives, data clustering and bioinformatics (DCB 2009) and on intelligent systems for medical decisions support (ISMDS 2009).