Author: J. N. Rodríguez López
Publisher: EDITUM
ISBN: 9788483713792
Category : Mathematics
Languages : en
Pages : 310
Book Description
Plant Peroxidases: Biochemistry and Physiology recoge los últimos avances en el campo de las peroxidasas vegetales. Las peroxidasas son un grupo de enzimas que se encuentran ampliamente distribuidas en toda la escala filogenética y catalizan la oxidación de un amplio número de sustratos orgánicos e inorgánicos, utilizando el poder oxidante del peróxido de hidrógeno. Además de su interés académico y fisiológico, estas enzimas son ampliamente utilizadas en laboratorios clínicos y en la industria. El presente libro consta de 47 artículos de investigaciónen en los que se tratan diversos aspectos de las peroxidasas como su estructura, enzimología genética, fisiología, localización y aplicaciones. Las aportaciones a este libro han sido realizadas por especialistas de todo el mundo que se reunieron en Murcia en el año 2002 durante el Congreso titulado VI International Plant Peroxidase Symposium
Plant peroxidases biochemistry and physiology
Author: J. N. Rodríguez López
Publisher: EDITUM
ISBN: 9788483713792
Category : Mathematics
Languages : en
Pages : 310
Book Description
Plant Peroxidases: Biochemistry and Physiology recoge los últimos avances en el campo de las peroxidasas vegetales. Las peroxidasas son un grupo de enzimas que se encuentran ampliamente distribuidas en toda la escala filogenética y catalizan la oxidación de un amplio número de sustratos orgánicos e inorgánicos, utilizando el poder oxidante del peróxido de hidrógeno. Además de su interés académico y fisiológico, estas enzimas son ampliamente utilizadas en laboratorios clínicos y en la industria. El presente libro consta de 47 artículos de investigaciónen en los que se tratan diversos aspectos de las peroxidasas como su estructura, enzimología genética, fisiología, localización y aplicaciones. Las aportaciones a este libro han sido realizadas por especialistas de todo el mundo que se reunieron en Murcia en el año 2002 durante el Congreso titulado VI International Plant Peroxidase Symposium
Publisher: EDITUM
ISBN: 9788483713792
Category : Mathematics
Languages : en
Pages : 310
Book Description
Plant Peroxidases: Biochemistry and Physiology recoge los últimos avances en el campo de las peroxidasas vegetales. Las peroxidasas son un grupo de enzimas que se encuentran ampliamente distribuidas en toda la escala filogenética y catalizan la oxidación de un amplio número de sustratos orgánicos e inorgánicos, utilizando el poder oxidante del peróxido de hidrógeno. Además de su interés académico y fisiológico, estas enzimas son ampliamente utilizadas en laboratorios clínicos y en la industria. El presente libro consta de 47 artículos de investigaciónen en los que se tratan diversos aspectos de las peroxidasas como su estructura, enzimología genética, fisiología, localización y aplicaciones. Las aportaciones a este libro han sido realizadas por especialistas de todo el mundo que se reunieron en Murcia en el año 2002 durante el Congreso titulado VI International Plant Peroxidase Symposium
Physiological Plant Pathology
Author: R. Heitefuß
Publisher: Springer Science & Business Media
ISBN: 364266279X
Category : Science
Languages : en
Pages : 909
Book Description
Plant pathology embraces all aspects of biological and scientific activity which are concerned with understanding the complex phenomena of diseases in plants. Physiological plant pathology represents those specialities within plant pathology which focus on the physiological and biochemical activities of pathogens and on the response of host plant tissues. Today there is an increasing recognition on the part of the scientific agri cultural community that only through a deeper and more fundamental under standing of all the interacting components of the agricultural biota can we expect to improve our capabilities of feeding an expanding world population. It is in this context that physiological plant pathology has assumed new significance within the broader field of plant pathology. No longer are studies on the biochemistry and physiology of pathogens and pathogenesis merely isolated academic exercises; rather, a substantial coherent body of knowledge is accumulating upon which our understanding of the process of disease developmen t and host resistance is being founded. It is from these foundations of knowledge that ultimately new insights into the control of plant diseases may be expected to grow. It seems appropriate, therefore, that at regular intervals those involved in the various subspecialities encompassing the broadest aspects of physiological plant pathology reassess the contributions within the particular specialities in the light of new knowledge and technologies for the purpose of articulating new and productive directions for the future.
Publisher: Springer Science & Business Media
ISBN: 364266279X
Category : Science
Languages : en
Pages : 909
Book Description
Plant pathology embraces all aspects of biological and scientific activity which are concerned with understanding the complex phenomena of diseases in plants. Physiological plant pathology represents those specialities within plant pathology which focus on the physiological and biochemical activities of pathogens and on the response of host plant tissues. Today there is an increasing recognition on the part of the scientific agri cultural community that only through a deeper and more fundamental under standing of all the interacting components of the agricultural biota can we expect to improve our capabilities of feeding an expanding world population. It is in this context that physiological plant pathology has assumed new significance within the broader field of plant pathology. No longer are studies on the biochemistry and physiology of pathogens and pathogenesis merely isolated academic exercises; rather, a substantial coherent body of knowledge is accumulating upon which our understanding of the process of disease developmen t and host resistance is being founded. It is from these foundations of knowledge that ultimately new insights into the control of plant diseases may be expected to grow. It seems appropriate, therefore, that at regular intervals those involved in the various subspecialities encompassing the broadest aspects of physiological plant pathology reassess the contributions within the particular specialities in the light of new knowledge and technologies for the purpose of articulating new and productive directions for the future.
Biochemical, Molecular, and Physiological Aspects of Plant Peroxidases
Author: J. Lobarzewski
Publisher:
ISBN: 9782881640032
Category : Botanical chemistry
Languages : en
Pages : 550
Book Description
Publisher:
ISBN: 9782881640032
Category : Botanical chemistry
Languages : en
Pages : 550
Book Description
Heme Peroxidases
Author: Emma Raven
Publisher: Royal Society of Chemistry
ISBN: 1782622624
Category : Science
Languages : en
Pages : 389
Book Description
Heme peroxidases are widely distributed in biological systems and are involved in a wide range of processes essential for life. This book provides a comprehensive single source of information on the various aspects of heme peroxidase structure, function and mechanism of action. Chapters written and edited by worldwide experts span a range of heme peroxidases from plants, yeast, bacteria and mammals. Discussed functions of peroxidases range from cell wall synthesis, synthesis of prostaglandins, role in drug suppression of tuberculosis, and antibacterial activity. Included is a discussion of peroxidases that also act as catalases and oxygenases. Heme Peroxidases serves as an essential text for those working in industry and academia in biochemistry and metallobiology.
Publisher: Royal Society of Chemistry
ISBN: 1782622624
Category : Science
Languages : en
Pages : 389
Book Description
Heme peroxidases are widely distributed in biological systems and are involved in a wide range of processes essential for life. This book provides a comprehensive single source of information on the various aspects of heme peroxidase structure, function and mechanism of action. Chapters written and edited by worldwide experts span a range of heme peroxidases from plants, yeast, bacteria and mammals. Discussed functions of peroxidases range from cell wall synthesis, synthesis of prostaglandins, role in drug suppression of tuberculosis, and antibacterial activity. Included is a discussion of peroxidases that also act as catalases and oxygenases. Heme Peroxidases serves as an essential text for those working in industry and academia in biochemistry and metallobiology.
Peroxidases in Chemistry and Biology
Author: Johannes Everse
Publisher: CRC Press
ISBN: 9780849369636
Category : Medical
Languages : en
Pages : 376
Book Description
The Peroxidases in Chemistry and Biology series provides up-to-date information on a wide range of developments in the field of Peroxidases, methods and applications. This is Volume 1 originally published in 1990.
Publisher: CRC Press
ISBN: 9780849369636
Category : Medical
Languages : en
Pages : 376
Book Description
The Peroxidases in Chemistry and Biology series provides up-to-date information on a wide range of developments in the field of Peroxidases, methods and applications. This is Volume 1 originally published in 1990.
Reactive Oxygen, Nitrogen and Sulfur Species in Plants
Author: Mirza Hasanuzzaman
Publisher: John Wiley & Sons
ISBN: 1119468663
Category : Science
Languages : en
Pages : 1016
Book Description
Presents a multidisciplinary analysis of the integration among reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS). Since plants are the main source of our food, the improvement of their productivity is the most important task for plant biologists. In this book, leading experts accumulate the recent development in the research on oxidative stress and approaches to enhance antioxidant defense system in crop plants. They discuss both the plant responses to oxidative stress and mechanisms of abiotic stress tolerance, and cover all of the recent approaches towards understanding oxidative stress in plants, providing comprehensive information about the topics. It also discusses how reactive nitrogen species and reactive sulfur species regulate plant physiology and plant tolerance to environmental stresses. Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms covers everything readers need to know in four comprehensive sections. It starts by looking at reactive oxygen species metabolism and antioxidant defense. Next, it covers reactive nitrogen species metabolism and signaling before going on to reactive sulfur species metabolism and signaling. The book finishes with a section that looks at crosstalk among reactive oxygen, nitrogen, and sulfur species based on current research done by experts. Presents the newest method for understanding oxidative stress in plants. Covers both the plant responses to oxidative stress and mechanisms of abiotic stress tolerance Details the integration among reactive oxygen species (ROS), reactive nitrogen species (RNS) and reactive sulfur species (RSS) Written by 140 experts in the field of plant stress physiology, crop improvement, and genetic engineering Providing a comprehensive collection of up-to-date knowledge spanning from biosynthesis and metabolism to signaling pathways implicated in the involvement of RONSS to plant defense mechanisms, Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms is an excellent book for plant breeders, molecular biologists, and plant physiologists, as well as a guide for students in the field of Plant Science.
Publisher: John Wiley & Sons
ISBN: 1119468663
Category : Science
Languages : en
Pages : 1016
Book Description
Presents a multidisciplinary analysis of the integration among reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS). Since plants are the main source of our food, the improvement of their productivity is the most important task for plant biologists. In this book, leading experts accumulate the recent development in the research on oxidative stress and approaches to enhance antioxidant defense system in crop plants. They discuss both the plant responses to oxidative stress and mechanisms of abiotic stress tolerance, and cover all of the recent approaches towards understanding oxidative stress in plants, providing comprehensive information about the topics. It also discusses how reactive nitrogen species and reactive sulfur species regulate plant physiology and plant tolerance to environmental stresses. Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms covers everything readers need to know in four comprehensive sections. It starts by looking at reactive oxygen species metabolism and antioxidant defense. Next, it covers reactive nitrogen species metabolism and signaling before going on to reactive sulfur species metabolism and signaling. The book finishes with a section that looks at crosstalk among reactive oxygen, nitrogen, and sulfur species based on current research done by experts. Presents the newest method for understanding oxidative stress in plants. Covers both the plant responses to oxidative stress and mechanisms of abiotic stress tolerance Details the integration among reactive oxygen species (ROS), reactive nitrogen species (RNS) and reactive sulfur species (RSS) Written by 140 experts in the field of plant stress physiology, crop improvement, and genetic engineering Providing a comprehensive collection of up-to-date knowledge spanning from biosynthesis and metabolism to signaling pathways implicated in the involvement of RONSS to plant defense mechanisms, Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms is an excellent book for plant breeders, molecular biologists, and plant physiologists, as well as a guide for students in the field of Plant Science.
Physiology and Molecular Biology of Stress Tolerance in Plants
Author: K.V. Madhava Rao
Publisher: Springer Science & Business Media
ISBN: 9781402042249
Category : Science
Languages : en
Pages : 372
Book Description
Biologists worldwide now speak the scientific language of molecular biology and use the same molecular tools. Interest is growing in the molecular biology of abiotic stress tolerance and modes of installing better tolerant mechanisms in crop plants. Current studies make plants capable of sustaining their yields even under stressful conditions. Further, this information may form the basis for its application in biotechnology and bioinformatics.
Publisher: Springer Science & Business Media
ISBN: 9781402042249
Category : Science
Languages : en
Pages : 372
Book Description
Biologists worldwide now speak the scientific language of molecular biology and use the same molecular tools. Interest is growing in the molecular biology of abiotic stress tolerance and modes of installing better tolerant mechanisms in crop plants. Current studies make plants capable of sustaining their yields even under stressful conditions. Further, this information may form the basis for its application in biotechnology and bioinformatics.
Abiotic Stress Response in Plants
Author: Arun Shanker
Publisher: BoD – Books on Demand
ISBN: 9533076720
Category : Science
Languages : en
Pages : 362
Book Description
Plants, unlike animals, are sessile. This demands that adverse changes in their environment are quickly recognized, distinguished and responded to with suitable reactions. Drought, heat, cold and salinity are among the major abiotic stresses that adversely affect plant growth and productivity. In general, abiotic stress often causes a series of morphological, physiological, biochemical and molecular changes that unfavorably affect plant growth, development and productivity. Drought, salinity, extreme temperatures (cold and heat) and oxidative stress are often interrelated; these conditions singularly or in combination induce cellular damage. To cope with abiotic stresses, of paramount significance is to understand plant responses to abiotic stresses that disturb the homeostatic equilibrium at cellular and molecular level in order to identify a common mechanism for multiple stress tolerance. This multi authored edited compilation attempts to put forth an all-inclusive biochemical and molecular picture in a systems approach wherein mechanism and adaptation aspects of abiotic stress are dealt with. The chief objective of the book hence is to deliver state of the art information for comprehending the effects of abiotic stress in plants at the cellular level.
Publisher: BoD – Books on Demand
ISBN: 9533076720
Category : Science
Languages : en
Pages : 362
Book Description
Plants, unlike animals, are sessile. This demands that adverse changes in their environment are quickly recognized, distinguished and responded to with suitable reactions. Drought, heat, cold and salinity are among the major abiotic stresses that adversely affect plant growth and productivity. In general, abiotic stress often causes a series of morphological, physiological, biochemical and molecular changes that unfavorably affect plant growth, development and productivity. Drought, salinity, extreme temperatures (cold and heat) and oxidative stress are often interrelated; these conditions singularly or in combination induce cellular damage. To cope with abiotic stresses, of paramount significance is to understand plant responses to abiotic stresses that disturb the homeostatic equilibrium at cellular and molecular level in order to identify a common mechanism for multiple stress tolerance. This multi authored edited compilation attempts to put forth an all-inclusive biochemical and molecular picture in a systems approach wherein mechanism and adaptation aspects of abiotic stress are dealt with. The chief objective of the book hence is to deliver state of the art information for comprehending the effects of abiotic stress in plants at the cellular level.
Managing Plant Stress Using Salicylic Acid
Author: Anket Sharma
Publisher: John Wiley & Sons
ISBN: 1119671086
Category : Science
Languages : en
Pages : 356
Book Description
MANAGING PLANT STRESS USING SALICYLIC ACID Enables readers to understand the ability of salicylic acid in reducing the effects of abiotic stresses in different crop species Salicylic acid is an important plant hormone which acts as a multifunctional molecule and regulates key physiological and biochemical processes in plants. This book highlights the tremendous potential of treating plants with salicylic acid, either prior to or during stress. It focuses on the specific challenges and opportunities related to exogenous application or priming technology, such as the mode of application, new methodologies, and the potential impacts of salicylic acid on the environment. Sample topics covered in the book include: The latest research on the ability of salicylic acid in reducing the effects of abiotic stresses in different crop species The mechanism of action of salicylic acid at the biochemical and molecular level Salicylic acid and its crosstalk with other plant hormones under stressful environments Regulation of abiotic stress by salicylic acid at the gene level The role of salicylic acid on the postharvest physiology of plants This book will be of significant interest to researchers, academics, and scientists working in the field of salicylic acid mediated responses in plants under challenging environments and with abiotic stress tolerance.
Publisher: John Wiley & Sons
ISBN: 1119671086
Category : Science
Languages : en
Pages : 356
Book Description
MANAGING PLANT STRESS USING SALICYLIC ACID Enables readers to understand the ability of salicylic acid in reducing the effects of abiotic stresses in different crop species Salicylic acid is an important plant hormone which acts as a multifunctional molecule and regulates key physiological and biochemical processes in plants. This book highlights the tremendous potential of treating plants with salicylic acid, either prior to or during stress. It focuses on the specific challenges and opportunities related to exogenous application or priming technology, such as the mode of application, new methodologies, and the potential impacts of salicylic acid on the environment. Sample topics covered in the book include: The latest research on the ability of salicylic acid in reducing the effects of abiotic stresses in different crop species The mechanism of action of salicylic acid at the biochemical and molecular level Salicylic acid and its crosstalk with other plant hormones under stressful environments Regulation of abiotic stress by salicylic acid at the gene level The role of salicylic acid on the postharvest physiology of plants This book will be of significant interest to researchers, academics, and scientists working in the field of salicylic acid mediated responses in plants under challenging environments and with abiotic stress tolerance.
Drought Stress Tolerance in Plants, Vol 1
Author: Mohammad Anwar Hossain
Publisher: Springer
ISBN: 3319288997
Category : Technology & Engineering
Languages : en
Pages : 538
Book Description
Abiotic stress adversely affects crop production worldwide, decreasing average yields for most of the crops to 50%. Among various abiotic stresses affecting agricultural production, drought stress is considered to be the main source of yield reduction around the globe. Due to an increasing world population, drought stress will lead to a serious food shortage by 2050. The situation may become worse due to predicated global climate change that may multiply the frequency and duration and severity of such abiotic stresses. Hence, there is an urgent need to improve our understanding on complex mechanisms of drought stress tolerance and to develop modern varieties that are more resilient to drought stress. Identification of the potential novel genes responsible for drought tolerance in crop plants will contribute to understanding the molecular mechanism of crop responses to drought stress. The discovery of novel genes, the analysis of their expression patterns in response to drought stress, and the determination of their potential functions in drought stress adaptation will provide the basis of effective engineering strategies to enhance crop drought stress tolerance. Although the in-depth water stress tolerance mechanisms is still unclear, it can be to some extent explained on the basis of ion homeostasis mediated by stress adaptation effectors, toxic radical scavenging, osmolyte biosynthesis, water transport, and long distance signaling response coordination. Importantly, complete elucidation of the physiological, biochemical, and molecular mechanisms for drought stress, perception, transduction, and tolerance is still a challenge to the plant biologists. The findings presented in volume 1 call attention to the physiological and biochemical modalities of drought stress that influence crop productivity, whereas volume 2 summarizes our current understanding on the molecular and genetic mechanisms of drought stress resistance in plants.
Publisher: Springer
ISBN: 3319288997
Category : Technology & Engineering
Languages : en
Pages : 538
Book Description
Abiotic stress adversely affects crop production worldwide, decreasing average yields for most of the crops to 50%. Among various abiotic stresses affecting agricultural production, drought stress is considered to be the main source of yield reduction around the globe. Due to an increasing world population, drought stress will lead to a serious food shortage by 2050. The situation may become worse due to predicated global climate change that may multiply the frequency and duration and severity of such abiotic stresses. Hence, there is an urgent need to improve our understanding on complex mechanisms of drought stress tolerance and to develop modern varieties that are more resilient to drought stress. Identification of the potential novel genes responsible for drought tolerance in crop plants will contribute to understanding the molecular mechanism of crop responses to drought stress. The discovery of novel genes, the analysis of their expression patterns in response to drought stress, and the determination of their potential functions in drought stress adaptation will provide the basis of effective engineering strategies to enhance crop drought stress tolerance. Although the in-depth water stress tolerance mechanisms is still unclear, it can be to some extent explained on the basis of ion homeostasis mediated by stress adaptation effectors, toxic radical scavenging, osmolyte biosynthesis, water transport, and long distance signaling response coordination. Importantly, complete elucidation of the physiological, biochemical, and molecular mechanisms for drought stress, perception, transduction, and tolerance is still a challenge to the plant biologists. The findings presented in volume 1 call attention to the physiological and biochemical modalities of drought stress that influence crop productivity, whereas volume 2 summarizes our current understanding on the molecular and genetic mechanisms of drought stress resistance in plants.