Big Data on Campus

Big Data on Campus PDF Author: Karen L. Webber
Publisher: Johns Hopkins University Press
ISBN: 1421439034
Category : Education
Languages : en
Pages : 337

Get Book Here

Book Description
How data-informed decision making can make colleges and universities more effective institutions. The continuing importance of data analytics is not lost on higher education leaders, who face a multitude of challenges, including increasing operating costs, dwindling state support, limits to tuition increases, and increased competition from the for-profit sector. To navigate these challenges, savvy leaders must leverage data to make sound decisions. In Big Data on Campus, leading data analytics experts and higher ed leaders show the role that analytics can play in the better administration of colleges and universities. Aimed at senior administrative leaders, practitioners of institutional research, technology professionals, and graduate students in higher education, the book opens with a conceptual discussion of the roles that data analytics can play in higher education administration. Subsequent chapters address recent developments in technology, the rapid accumulation of data assets, organizational maturity in building analytical capabilities, and methodological advancements in developing predictive and prescriptive analytics. Each chapter includes a literature review of the research and application of analytics developments in their respective functional areas, a discussion of industry trends, examples of the application of data analytics in their decision process, and other related issues that readers may wish to consider in their own organizational environment to find opportunities for building robust data analytics capabilities. Using a series of focused discussions and case studies, Big Data on Campus helps readers understand how analytics can support major organizational functions in higher education, including admission decisions, retention and enrollment management, student life and engagement, academic and career advising, student learning and assessment, and academic program planning. The final section of the book addresses major issues and human factors involved in using analytics to support decision making; the ethical, cultural, and managerial implications of its use; the role of university leaders in promoting analytics in decision making; and the need for a strong campus community to embrace the analytics revolution. Contributors: Rana Glasgal, J. Michael Gower, Tom Gutman, Brian P. Hinote, Braden J. Hosch, Aditya Johri, Christine M. Keller, Carrie Klein, Jaime Lester, Carrie Hancock Marcinkevage, Gail B. Marsh, Susan M. Menditto, Jillian N. Morn, Valentina Nestor, Cathy O'Bryan, Huzefa Rangwala, Timothy Renick, Charles Tegen, Rachit Thariani, Chris Tompkins, Lindsay K. Wayt, Karen L. Webber, Henry Y. Zheng, Ying Zhou

Big Data on Campus

Big Data on Campus PDF Author: Karen L. Webber
Publisher: Johns Hopkins University Press
ISBN: 1421439034
Category : Education
Languages : en
Pages : 337

Get Book Here

Book Description
How data-informed decision making can make colleges and universities more effective institutions. The continuing importance of data analytics is not lost on higher education leaders, who face a multitude of challenges, including increasing operating costs, dwindling state support, limits to tuition increases, and increased competition from the for-profit sector. To navigate these challenges, savvy leaders must leverage data to make sound decisions. In Big Data on Campus, leading data analytics experts and higher ed leaders show the role that analytics can play in the better administration of colleges and universities. Aimed at senior administrative leaders, practitioners of institutional research, technology professionals, and graduate students in higher education, the book opens with a conceptual discussion of the roles that data analytics can play in higher education administration. Subsequent chapters address recent developments in technology, the rapid accumulation of data assets, organizational maturity in building analytical capabilities, and methodological advancements in developing predictive and prescriptive analytics. Each chapter includes a literature review of the research and application of analytics developments in their respective functional areas, a discussion of industry trends, examples of the application of data analytics in their decision process, and other related issues that readers may wish to consider in their own organizational environment to find opportunities for building robust data analytics capabilities. Using a series of focused discussions and case studies, Big Data on Campus helps readers understand how analytics can support major organizational functions in higher education, including admission decisions, retention and enrollment management, student life and engagement, academic and career advising, student learning and assessment, and academic program planning. The final section of the book addresses major issues and human factors involved in using analytics to support decision making; the ethical, cultural, and managerial implications of its use; the role of university leaders in promoting analytics in decision making; and the need for a strong campus community to embrace the analytics revolution. Contributors: Rana Glasgal, J. Michael Gower, Tom Gutman, Brian P. Hinote, Braden J. Hosch, Aditya Johri, Christine M. Keller, Carrie Klein, Jaime Lester, Carrie Hancock Marcinkevage, Gail B. Marsh, Susan M. Menditto, Jillian N. Morn, Valentina Nestor, Cathy O'Bryan, Huzefa Rangwala, Timothy Renick, Charles Tegen, Rachit Thariani, Chris Tompkins, Lindsay K. Wayt, Karen L. Webber, Henry Y. Zheng, Ying Zhou

Big Data in Education

Big Data in Education PDF Author: Ben Williamson
Publisher: SAGE
ISBN: 1526416328
Category : Education
Languages : en
Pages : 281

Get Book Here

Book Description
Big data has the power to transform education and educational research. Governments, researchers and commercial companies are only beginning to understand the potential that big data offers in informing policy ideas, contributing to the development of new educational tools and innovative ways of conducting research. This cutting-edge overview explores the current state-of-play, looking at big data and the related topic of computer code to examine the implications for education and schooling for today and the near future. Key topics include: · The role of learning analytics and educational data science in schools · A critical appreciation of code, algorithms and infrastructures · The rise of ‘cognitive classrooms’, and the practical application of computational algorithms to learning environments · Important digital research methods issues for researchers This is essential reading for anyone studying or working in today′s education environment!

Big Data Analytics

Big Data Analytics PDF Author: Kim H. Pries
Publisher: CRC Press
ISBN: 1482234521
Category : Computers
Languages : en
Pages : 564

Get Book Here

Book Description
With this book, managers and decision makers are given the tools to make more informed decisions about big data purchasing initiatives. Big Data Analytics: A Practical Guide for Managers not only supplies descriptions of common tools, but also surveys the various products and vendors that supply the big data market.Comparing and contrasting the dif

Big Data Systems

Big Data Systems PDF Author: Jawwad Ahmad Shamsi
Publisher: CRC Press
ISBN: 0429531575
Category : Computers
Languages : en
Pages : 370

Get Book Here

Book Description
Big Data Systems encompass massive challenges related to data diversity, storage mechanisms, and requirements of massive computational power. Further, capabilities of big data systems also vary with respect to type of problems. For instance, distributed memory systems are not recommended for iterative algorithms. Similarly, variations in big data systems also exist related to consistency and fault tolerance. The purpose of this book is to provide a detailed explanation of big data systems. The book covers various topics including Networking, Security, Privacy, Storage, Computation, Cloud Computing, NoSQL and NewSQL systems, High Performance Computing, and Deep Learning. An illustrative and practical approach has been adopted in which theoretical topics have been aided by well-explained programming and illustrative examples. Key Features: Introduces concepts and evolution of Big Data technology. Illustrates examples for thorough understanding. Contains programming examples for hands on development. Explains a variety of topics including NoSQL Systems, NewSQL systems, Security, Privacy, Networking, Cloud, High Performance Computing, and Deep Learning. Exemplifies widely used big data technologies such as Hadoop and Spark. Includes discussion on case studies and open issues. Provides end of chapter questions for enhanced learning.

A Closer Look at Big Data Analytics

A Closer Look at Big Data Analytics PDF Author: R. Anandan
Publisher: Nova Science Publishers
ISBN: 9781536194265
Category : Computers
Languages : en
Pages : 366

Get Book Here

Book Description
"Big Data Analytics is a field that dissects, efficiently extricates data from, or in any case manages informational indexes that are excessively huge or complex to be managed by customary information preparing application programming. Information with numerous cases (lines) offers more noteworthy factual force, while information with higher multifaceted nature may prompt a higher bogus disclosure rate. Enormous information challenges incorporate catching information, information stockpiling, information investigation, search, sharing, move, representation, and questioning, refreshing, data security and data source. Large information was initially connected with three key ideas: volume, variety and velocity. Consequently, huge information regularly incorporates information with sizes that surpass the limit of conventional programming to measure inside a satisfactory time and worth. Current utilization of the term enormous information will in general allude to the utilization of predictive analytics, user behavior analytics, or certain other progressed information investigation techniques that concentrate an incentive from information, and sometimes to a specific size of informational index. There is little uncertainty that the amounts of information now accessible are undoubtedly enormous, however that is not the most important quality of this new information biological system. Investigation of informational indexes can discover new relationships to spot business patterns or models. Researchers, business persons, clinical specialists, promoting and governments consistently meet challenges with huge informational collections in territories including Internet look, fintech, metropolitan informatics, and business informatics. Researchers experience constraints in e-Science work, including meteorology, genomics, connectomics, complex material science reproductions, science and ecological exploration. The main objective of this book is to write about issues, challenges, opportunities, and solutions in novel research projects about big data in various domains. The topics of interest include, but are not limited to: efficient storage, management and sharing large scale of data; novel approaches for analyzing data using big data technologies; implementation of high performance and/or scalable and/or real-time computation algorithms for analyzing big data; usage of various data sources like historical data, social networking media, machine data and crowd-sourcing data; using machine learning, visual analytics, data mining, spatio-temporal data analysis and statistical inference in different domains (with large scale datasets); Legal and ethical issues and solutions for using, sharing and publishing large datasets; and the results of data analytics, security and privacy issues"--

Big Data

Big Data PDF Author: Arben Asllani
Publisher:
ISBN: 9781943153770
Category :
Languages : en
Pages :

Get Book Here

Book Description


Big Data

Big Data PDF Author: Hai Jin
Publisher: Springer Nature
ISBN: 9811518998
Category : Computers
Languages : en
Pages : 440

Get Book Here

Book Description
This book constitutes the proceedings of the 7th CCF Conference on Big Data, BigData 2019, held in Wuhan, China, in October 2019. The 30 full papers presented in this volume were carefully reviewed and selected from 324 submissions. They were organized in topical sections as follows: big data modelling and methodology; big data support and architecture; big data processing; big data analysis; and big data application.

Big Data – BigData 2023

Big Data – BigData 2023 PDF Author: Shunli Zhang
Publisher: Springer Nature
ISBN: 3031447255
Category : Computers
Languages : en
Pages : 239

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 12th International Conference, BigData 2023, Held as Part of the Services Conference Federation, SCF 2023, Honolulu, HI, USA, during September 23–26, 2023. The 14 full papers presented together with 2 short papers were carefully reviewed and selected from 27 submissions. The conference focuses on ​research track and application track.

Advanced Hybrid Information Processing

Advanced Hybrid Information Processing PDF Author: Guan Gui
Publisher: Springer Nature
ISBN: 3030364054
Category : Computers
Languages : en
Pages : 494

Get Book Here

Book Description
This two-volume set LNICST 301 -302 constitutes the post-conference proceedings of the Third EAI International Conference on Advanced Hybrid Information Processing, ADHIP 2019, held in Nanjing, China, in September 2019. The 101 papers presented were selected from 237 submissions and focus on hybrid big data processing. Since information processing has acted as an important research domain in science and technology today, it is now to develop deeper and wider use of hybrid information processing, especially information processing for big data. There are more remaining issues waiting for solving, such as classification and systemization of big data, objective tracking and behavior understanding in big multimedia data, encoding and compression of big data.

2021 International Conference on Applications and Techniques in Cyber Intelligence

2021 International Conference on Applications and Techniques in Cyber Intelligence PDF Author: Jemal Abawajy
Publisher: Springer Nature
ISBN: 3030792005
Category : Computers
Languages : en
Pages : 994

Get Book Here

Book Description
This book presents innovative ideas, cutting-edge findings, and novel techniques, methods, and applications in a broad range of cybersecurity and cyberthreat intelligence areas. As our society becomes smarter, there is a corresponding need to secure our cyberfuture. The book describes approaches and findings that are of interest to business professionals and governments seeking to secure our data and underpin infrastructures, as well as to individual users.