Big Data in Complex and Social Networks

Big Data in Complex and Social Networks PDF Author: My T. Thai
Publisher: CRC Press
ISBN: 1315396696
Category : Business & Economics
Languages : en
Pages : 253

Get Book Here

Book Description
This book presents recent developments on the theoretical, algorithmic, and application aspects of Big Data in Complex and Social Networks. The book consists of four parts, covering a wide range of topics. The first part of the book focuses on data storage and data processing. It explores how the efficient storage of data can fundamentally support intensive data access and queries, which enables sophisticated analysis. It also looks at how data processing and visualization help to communicate information clearly and efficiently. The second part of the book is devoted to the extraction of essential information and the prediction of web content. The book shows how Big Data analysis can be used to understand the interests, location, and search history of users and provide more accurate predictions of User Behavior. The latter two parts of the book cover the protection of privacy and security, and emergent applications of big data and social networks. It analyzes how to model rumor diffusion, identify misinformation from massive data, and design intervention strategies. Applications of big data and social networks in multilayer networks and multiparty systems are also covered in-depth.

Big Data in Complex and Social Networks

Big Data in Complex and Social Networks PDF Author: My T. Thai
Publisher: CRC Press
ISBN: 1315396696
Category : Business & Economics
Languages : en
Pages : 253

Get Book Here

Book Description
This book presents recent developments on the theoretical, algorithmic, and application aspects of Big Data in Complex and Social Networks. The book consists of four parts, covering a wide range of topics. The first part of the book focuses on data storage and data processing. It explores how the efficient storage of data can fundamentally support intensive data access and queries, which enables sophisticated analysis. It also looks at how data processing and visualization help to communicate information clearly and efficiently. The second part of the book is devoted to the extraction of essential information and the prediction of web content. The book shows how Big Data analysis can be used to understand the interests, location, and search history of users and provide more accurate predictions of User Behavior. The latter two parts of the book cover the protection of privacy and security, and emergent applications of big data and social networks. It analyzes how to model rumor diffusion, identify misinformation from massive data, and design intervention strategies. Applications of big data and social networks in multilayer networks and multiparty systems are also covered in-depth.

Big Data of Complex Networks

Big Data of Complex Networks PDF Author: Matthias Dehmer
Publisher: CRC Press
ISBN: 1498723624
Category : Computers
Languages : en
Pages : 332

Get Book Here

Book Description
Big Data of Complex Networks presents and explains the methods from the study of big data that can be used in analysing massive structural data sets, including both very large networks and sets of graphs. As well as applying statistical analysis techniques like sampling and bootstrapping in an interdisciplinary manner to produce novel techniques for analyzing massive amounts of data, this book also explores the possibilities offered by the special aspects such as computer memory in investigating large sets of complex networks. Intended for computer scientists, statisticians and mathematicians interested in the big data and networks, Big Data of Complex Networks is also a valuable tool for researchers in the fields of visualization, data analysis, computer vision and bioinformatics. Key features: Provides a complete discussion of both the hardware and software used to organize big data Describes a wide range of useful applications for managing big data and resultant data sets Maintains a firm focus on massive data and large networks Unveils innovative techniques to help readers handle big data Matthias Dehmer received his PhD in computer science from the Darmstadt University of Technology, Germany. Currently, he is Professor at UMIT – The Health and Life Sciences University, Austria, and the Universität der Bundeswehr München. His research interests are in graph theory, data science, complex networks, complexity, statistics and information theory. Frank Emmert-Streib received his PhD in theoretical physics from the University of Bremen, and is currently Associate professor at Tampere University of Technology, Finland. His research interests are in the field of computational biology, machine learning and network medicine. Stefan Pickl holds a PhD in mathematics from the Darmstadt University of Technology, and is currently a Professor at Bundeswehr Universität München. His research interests are in operations research, systems biology, graph theory and discrete optimization. Andreas Holzinger received his PhD in cognitive science from Graz University and his habilitation (second PhD) in computer science from Graz University of Technology. He is head of the Holzinger Group HCI-KDD at the Medical University Graz and Visiting Professor for Machine Learning in Health Informatics Vienna University of Technology.

Data Science and Complex Networks

Data Science and Complex Networks PDF Author: Guido Caldarelli
Publisher: Oxford University Press
ISBN: 0191024023
Category : Science
Languages : en
Pages : 136

Get Book Here

Book Description
This book provides a comprehensive yet short description of the basic concepts of Complex Network theory. In contrast to other books the authors present these concepts through real case studies. The application topics span from Foodwebs, to the Internet, the World Wide Web and the Social Networks, passing through the International Trade Web and Financial time series. The final part is devoted to definition and implementation of the most important network models. The text provides information on the structure of the data and on the quality of available datasets. Furthermore it provides a series of codes to allow immediate implementation of what is theoretically described in the book. Readers already used to the concepts introduced in this book can learn the art of coding in Python by using the online material. To this purpose the authors have set up a dedicated web site where readers can download and test the codes. The whole project is aimed as a learning tool for scientists and practitioners, enabling them to begin working instantly in the field of Complex Networks.

Machine Learning in Complex Networks

Machine Learning in Complex Networks PDF Author: Thiago Christiano Silva
Publisher: Springer
ISBN: 3319172905
Category : Computers
Languages : en
Pages : 345

Get Book Here

Book Description
This book presents the features and advantages offered by complex networks in the machine learning domain. In the first part, an overview on complex networks and network-based machine learning is presented, offering necessary background material. In the second part, we describe in details some specific techniques based on complex networks for supervised, non-supervised, and semi-supervised learning. Particularly, a stochastic particle competition technique for both non-supervised and semi-supervised learning using a stochastic nonlinear dynamical system is described in details. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition, data reliability issues are explored in semi-supervised learning. Such matter has practical importance and is not often found in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in this book, we present a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. We show that the high level technique can realize classification according to the semantic meaning of the data. This book intends to combine two widely studied research areas, machine learning and complex networks, which in turn will generate broad interests to scientific community, mainly to computer science and engineering areas.

Dynamical Processes on Complex Networks

Dynamical Processes on Complex Networks PDF Author: Alain Barrat
Publisher: Cambridge University Press
ISBN: 9781107626256
Category : Science
Languages : en
Pages : 361

Get Book Here

Book Description
The availability of large data sets have allowed researchers to uncover complex properties such as large scale fluctuations and heterogeneities in many networks which have lead to the breakdown of standard theoretical frameworks and models. Until recently these systems were considered as haphazard sets of points and connections. Recent advances have generated a vigorous research effort in understanding the effect of complex connectivity patterns on dynamical phenomena. For example, a vast number of everyday systems, from the brain to ecosystems, power grids and the Internet, can be represented as large complex networks. This new and recent account presents a comprehensive explanation of these effects.

Complex Network Analysis in Python

Complex Network Analysis in Python PDF Author: Dmitry Zinoviev
Publisher: Pragmatic Bookshelf
ISBN: 1680505408
Category : Computers
Languages : en
Pages : 330

Get Book Here

Book Description
Construct, analyze, and visualize networks with networkx, a Python language module. Network analysis is a powerful tool you can apply to a multitude of datasets and situations. Discover how to work with all kinds of networks, including social, product, temporal, spatial, and semantic networks. Convert almost any real-world data into a complex network--such as recommendations on co-using cosmetic products, muddy hedge fund connections, and online friendships. Analyze and visualize the network, and make business decisions based on your analysis. If you're a curious Python programmer, a data scientist, or a CNA specialist interested in mechanizing mundane tasks, you'll increase your productivity exponentially. Complex network analysis used to be done by hand or with non-programmable network analysis tools, but not anymore! You can now automate and program these tasks in Python. Complex networks are collections of connected items, words, concepts, or people. By exploring their structure and individual elements, we can learn about their meaning, evolution, and resilience. Starting with simple networks, convert real-life and synthetic network graphs into networkx data structures. Look at more sophisticated networks and learn more powerful machinery to handle centrality calculation, blockmodeling, and clique and community detection. Get familiar with presentation-quality network visualization tools, both programmable and interactive--such as Gephi, a CNA explorer. Adapt the patterns from the case studies to your problems. Explore big networks with NetworKit, a high-performance networkx substitute. Each part in the book gives you an overview of a class of networks, includes a practical study of networkx functions and techniques, and concludes with case studies from various fields, including social networking, anthropology, marketing, and sports analytics. Combine your CNA and Python programming skills to become a better network analyst, a more accomplished data scientist, and a more versatile programmer. What You Need: You will need a Python 3.x installation with the following additional modules: Pandas (>=0.18), NumPy (>=1.10), matplotlib (>=1.5), networkx (>=1.11), python-louvain (>=0.5), NetworKit (>=3.6), and generalizesimilarity. We recommend using the Anaconda distribution that comes with all these modules, except for python-louvain, NetworKit, and generalizedsimilarity, and works on all major modern operating systems.

Big Data in Complex Systems

Big Data in Complex Systems PDF Author: Aboul Ella Hassanien
Publisher: Springer
ISBN: 331911056X
Category : Technology & Engineering
Languages : en
Pages : 502

Get Book Here

Book Description
This volume provides challenges and Opportunities with updated, in-depth material on the application of Big data to complex systems in order to find solutions for the challenges and problems facing big data sets applications. Much data today is not natively in structured format; for example, tweets and blogs are weakly structured pieces of text, while images and video are structured for storage and display, but not for semantic content and search. Therefore transforming such content into a structured format for later analysis is a major challenge. Data analysis, organization, retrieval, and modeling are other foundational challenges treated in this book. The material of this book will be useful for researchers and practitioners in the field of big data as well as advanced undergraduate and graduate students. Each of the 17 chapters in the book opens with a chapter abstract and key terms list. The chapters are organized along the lines of problem description, related works, and analysis of the results and comparisons are provided whenever feasible.

Control Techniques for Complex Networks

Control Techniques for Complex Networks PDF Author: Sean Meyn
Publisher: Cambridge University Press
ISBN: 0521884411
Category : Mathematics
Languages : en
Pages : 33

Get Book Here

Book Description
From foundations to state-of-the-art; the tools and philosophy you need to build network models.

Complex Networks

Complex Networks PDF Author: Vito Latora
Publisher: Cambridge University Press
ISBN: 1107103185
Category : Computers
Languages : en
Pages : 585

Get Book Here

Book Description
A comprehensive introduction to the theory and applications of complex network science, complete with real-world data sets and software tools.

Complex Networks

Complex Networks PDF Author: B. S. Manoj
Publisher: Prentice Hall
ISBN: 0134787129
Category : Computers
Languages : en
Pages : 763

Get Book Here

Book Description
The Up-to-Date Guide to Complex Networks for Students, Researchers, and Practitioners Networks with complex and irregular connectivity patterns appear in biology, chemistry, communications, social networks, transportation systems, power grids, the Internet, and many big data applications. Complex Networks offers a novel engineering perspective on these networks, focusing on their key communications, networking, and signal processing dimensions. Three leading researchers draw on recent advances to illuminate the design and characterization of complex computer networks and graph signal processing systems. The authors cover both the fundamental concepts underlying graph theory and complex networks, as well as current theory and research. They discuss spectra and signal processing in complex networks, graph signal processing approaches for extracting information from structural data, and advanced techniques for multiscale analysis. What makes networks complex, and how to successfully characterize them Graph theory foundations, definitions, and concepts Full chapters on small-world, scale-free, small-world wireless mesh, and small-world wireless sensor networks Complex network spectra and graph signal processing concepts and techniques Multiscale analysis via transforms and wavelets