Author: Dr. F. Amul Mary & Dr. S. Jyothi
Publisher: Ashok Yakkaldevi
ISBN: 171602448X
Category : Art
Languages : en
Pages : 180
Book Description
The genomes in human body programs the blueprint of one’s life but the functions of those genomes nearly three billion genome bases are not known. The genome sequence in human being gives the fundamental rules for human biology. Science makes every effort to reveal the laws of nature and critical understanding of the biology. Scientists in the life-science field are seeking genetic variants associated with multifaceted set of observable characteristics to advance our understanding about genetics. Technological advancements are assisting the scientists to quickly create, store and analyze the data as fast as possible and as efficient as possible. The NCBI and other organizations maintain genome sequences, proteins, RNA, DNA and other information of all species as well as their behavioral data. There is a lot and lot of data. Translating these data into useful insights which can be used for research and innovation is a main concern.
BIG DATA ANALYTICS IN COMPUTATIONAL GENOME SEQUENCE ANALYSIS
Author: Dr. F. Amul Mary & Dr. S. Jyothi
Publisher: Ashok Yakkaldevi
ISBN: 171602448X
Category : Art
Languages : en
Pages : 180
Book Description
The genomes in human body programs the blueprint of one’s life but the functions of those genomes nearly three billion genome bases are not known. The genome sequence in human being gives the fundamental rules for human biology. Science makes every effort to reveal the laws of nature and critical understanding of the biology. Scientists in the life-science field are seeking genetic variants associated with multifaceted set of observable characteristics to advance our understanding about genetics. Technological advancements are assisting the scientists to quickly create, store and analyze the data as fast as possible and as efficient as possible. The NCBI and other organizations maintain genome sequences, proteins, RNA, DNA and other information of all species as well as their behavioral data. There is a lot and lot of data. Translating these data into useful insights which can be used for research and innovation is a main concern.
Publisher: Ashok Yakkaldevi
ISBN: 171602448X
Category : Art
Languages : en
Pages : 180
Book Description
The genomes in human body programs the blueprint of one’s life but the functions of those genomes nearly three billion genome bases are not known. The genome sequence in human being gives the fundamental rules for human biology. Science makes every effort to reveal the laws of nature and critical understanding of the biology. Scientists in the life-science field are seeking genetic variants associated with multifaceted set of observable characteristics to advance our understanding about genetics. Technological advancements are assisting the scientists to quickly create, store and analyze the data as fast as possible and as efficient as possible. The NCBI and other organizations maintain genome sequences, proteins, RNA, DNA and other information of all species as well as their behavioral data. There is a lot and lot of data. Translating these data into useful insights which can be used for research and innovation is a main concern.
Big Data Analytics in Genomics
Author: Ka-Chun Wong
Publisher: Springer
ISBN: 3319412795
Category : Computers
Languages : en
Pages : 426
Book Description
This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace. To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA. In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science. Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.
Publisher: Springer
ISBN: 3319412795
Category : Computers
Languages : en
Pages : 426
Book Description
This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace. To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA. In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science. Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.
Computational Genomics with R
Author: Altuna Akalin
Publisher: CRC Press
ISBN: 1498781861
Category : Mathematics
Languages : en
Pages : 463
Book Description
Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.
Publisher: CRC Press
ISBN: 1498781861
Category : Mathematics
Languages : en
Pages : 463
Book Description
Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.
Biological Sequence Analysis
Author: Richard Durbin
Publisher: Cambridge University Press
ISBN: 113945739X
Category : Science
Languages : en
Pages : 372
Book Description
Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.
Publisher: Cambridge University Press
ISBN: 113945739X
Category : Science
Languages : en
Pages : 372
Book Description
Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.
Encyclopedia of Big Data Technologies
Author: Sherif Sakr
Publisher: Springer
ISBN: 9783319775241
Category : Computers
Languages : en
Pages : 1820
Book Description
The Encyclopedia of Big Data Technologies provides researchers, educators, students and industry professionals with a comprehensive authority over the most relevant Big Data Technology concepts. With over 300 articles written by worldwide subject matter experts from both industry and academia, the encyclopedia covers topics such as big data storage systems, NoSQL database, cloud computing, distributed systems, data processing, data management, machine learning and social technologies, data science. Each peer-reviewed, highly structured entry provides the reader with basic terminology, subject overviews, key research results, application examples, future directions, cross references and a bibliography. The entries are expository and tutorial, making this reference a practical resource for students, academics, or professionals. In addition, the distinguished, international editorial board of the encyclopedia consists of well-respected scholars, each developing topics based upon their expertise.
Publisher: Springer
ISBN: 9783319775241
Category : Computers
Languages : en
Pages : 1820
Book Description
The Encyclopedia of Big Data Technologies provides researchers, educators, students and industry professionals with a comprehensive authority over the most relevant Big Data Technology concepts. With over 300 articles written by worldwide subject matter experts from both industry and academia, the encyclopedia covers topics such as big data storage systems, NoSQL database, cloud computing, distributed systems, data processing, data management, machine learning and social technologies, data science. Each peer-reviewed, highly structured entry provides the reader with basic terminology, subject overviews, key research results, application examples, future directions, cross references and a bibliography. The entries are expository and tutorial, making this reference a practical resource for students, academics, or professionals. In addition, the distinguished, international editorial board of the encyclopedia consists of well-respected scholars, each developing topics based upon their expertise.
Big Data Analytics in Bioinformatics and Healthcare
Author: Wang, Baoying
Publisher: IGI Global
ISBN: 1466666129
Category : Computers
Languages : en
Pages : 552
Book Description
As technology evolves and electronic data becomes more complex, digital medical record management and analysis becomes a challenge. In order to discover patterns and make relevant predictions based on large data sets, researchers and medical professionals must find new methods to analyze and extract relevant health information. Big Data Analytics in Bioinformatics and Healthcare merges the fields of biology, technology, and medicine in order to present a comprehensive study on the emerging information processing applications necessary in the field of electronic medical record management. Complete with interdisciplinary research resources, this publication is an essential reference source for researchers, practitioners, and students interested in the fields of biological computation, database management, and health information technology, with a special focus on the methodologies and tools to manage massive and complex electronic information.
Publisher: IGI Global
ISBN: 1466666129
Category : Computers
Languages : en
Pages : 552
Book Description
As technology evolves and electronic data becomes more complex, digital medical record management and analysis becomes a challenge. In order to discover patterns and make relevant predictions based on large data sets, researchers and medical professionals must find new methods to analyze and extract relevant health information. Big Data Analytics in Bioinformatics and Healthcare merges the fields of biology, technology, and medicine in order to present a comprehensive study on the emerging information processing applications necessary in the field of electronic medical record management. Complete with interdisciplinary research resources, this publication is an essential reference source for researchers, practitioners, and students interested in the fields of biological computation, database management, and health information technology, with a special focus on the methodologies and tools to manage massive and complex electronic information.
Topological Data Analysis for Genomics and Evolution
Author: Raúl Rabadán
Publisher: Cambridge University Press
ISBN: 1108753396
Category : Science
Languages : en
Pages : 521
Book Description
Biology has entered the age of Big Data. The technical revolution has transformed the field, and extracting meaningful information from large biological data sets is now a central methodological challenge. Algebraic topology is a well-established branch of pure mathematics that studies qualitative descriptors of the shape of geometric objects. It aims to reduce questions to a comparison of algebraic invariants, such as numbers, which are typically easier to solve. Topological data analysis is a rapidly-developing subfield that leverages the tools of algebraic topology to provide robust multiscale analysis of data sets. This book introduces the central ideas and techniques of topological data analysis and its specific applications to biology, including the evolution of viruses, bacteria and humans, genomics of cancer and single cell characterization of developmental processes. Bridging two disciplines, the book is for researchers and graduate students in genomics and evolutionary biology alongside mathematicians interested in applied topology.
Publisher: Cambridge University Press
ISBN: 1108753396
Category : Science
Languages : en
Pages : 521
Book Description
Biology has entered the age of Big Data. The technical revolution has transformed the field, and extracting meaningful information from large biological data sets is now a central methodological challenge. Algebraic topology is a well-established branch of pure mathematics that studies qualitative descriptors of the shape of geometric objects. It aims to reduce questions to a comparison of algebraic invariants, such as numbers, which are typically easier to solve. Topological data analysis is a rapidly-developing subfield that leverages the tools of algebraic topology to provide robust multiscale analysis of data sets. This book introduces the central ideas and techniques of topological data analysis and its specific applications to biology, including the evolution of viruses, bacteria and humans, genomics of cancer and single cell characterization of developmental processes. Bridging two disciplines, the book is for researchers and graduate students in genomics and evolutionary biology alongside mathematicians interested in applied topology.
Advances in Genomic Sequence Analysis and Pattern Discovery
Author: Laura Elnitski
Publisher: World Scientific
ISBN: 9814327727
Category : Science
Languages : en
Pages : 236
Book Description
Mapping the genomic landscapes is one of the most exciting frontiers of science. We have the opportunity to reverse engineer the blueprints and the control systems of living organisms. Computational tools are key enablers in the deciphering process. This book provides an in-depth presentation of some of the important computational biology approaches to genomic sequence analysis. The first section of the book discusses methods for discovering patterns in DNA and RNA. This is followed by the second section that reflects on methods in various ways, including performance, usage and paradigms.
Publisher: World Scientific
ISBN: 9814327727
Category : Science
Languages : en
Pages : 236
Book Description
Mapping the genomic landscapes is one of the most exciting frontiers of science. We have the opportunity to reverse engineer the blueprints and the control systems of living organisms. Computational tools are key enablers in the deciphering process. This book provides an in-depth presentation of some of the important computational biology approaches to genomic sequence analysis. The first section of the book discusses methods for discovering patterns in DNA and RNA. This is followed by the second section that reflects on methods in various ways, including performance, usage and paradigms.
Introduction To Computational Metagenomics
Author: Zhong Wang
Publisher: World Scientific
ISBN: 9811242488
Category : Science
Languages : en
Pages : 210
Book Description
Breakthroughs in high-throughput genome sequencing and high-performance computing technologies have empowered scientists to decode many genomes including our own. Now they have a bigger ambition: to fully understand the vast diversity of microbial communities within us and around us, and to exploit their potential for the improvement of our health and environment. In this new field called metagenomics, microbial genomes are sequenced directly from the habitats without lab cultivation. Computational metagenomics, however, faces both a data challenge that deals with tens of tera-bases of sequences and an algorithmic one that deals with the complexity of thousands of species and their interactions.This interdisciplinary book is essential reading for those who are interested in beginning their own journey in computational metagenomics. It is a prism to look through various intricate computational metagenomics problems and unravel their three distinctive aspects: metagenomics, data engineering, and algorithms. Graduate students and advanced undergraduates from genomics science or computer science fields will find that the concepts explained in this book can serve as stepping stones for more advanced topics, while metagenomics practitioners and researchers from similar disciplines may use it to broaden their knowledge or identify new research targets.
Publisher: World Scientific
ISBN: 9811242488
Category : Science
Languages : en
Pages : 210
Book Description
Breakthroughs in high-throughput genome sequencing and high-performance computing technologies have empowered scientists to decode many genomes including our own. Now they have a bigger ambition: to fully understand the vast diversity of microbial communities within us and around us, and to exploit their potential for the improvement of our health and environment. In this new field called metagenomics, microbial genomes are sequenced directly from the habitats without lab cultivation. Computational metagenomics, however, faces both a data challenge that deals with tens of tera-bases of sequences and an algorithmic one that deals with the complexity of thousands of species and their interactions.This interdisciplinary book is essential reading for those who are interested in beginning their own journey in computational metagenomics. It is a prism to look through various intricate computational metagenomics problems and unravel their three distinctive aspects: metagenomics, data engineering, and algorithms. Graduate students and advanced undergraduates from genomics science or computer science fields will find that the concepts explained in this book can serve as stepping stones for more advanced topics, while metagenomics practitioners and researchers from similar disciplines may use it to broaden their knowledge or identify new research targets.
Genomics in the Cloud
Author: Geraldine A. Van der Auwera
Publisher: O'Reilly Media
ISBN: 1491975164
Category : Computers
Languages : en
Pages : 496
Book Description
Data in the genomics field is booming. In just a few years, organizations such as the National Institutes of Health (NIH) will host 50+ petabytes—or over 50 million gigabytes—of genomic data, and they’re turning to cloud infrastructure to make that data available to the research community. How do you adapt analysis tools and protocols to access and analyze that volume of data in the cloud? With this practical book, researchers will learn how to work with genomics algorithms using open source tools including the Genome Analysis Toolkit (GATK), Docker, WDL, and Terra. Geraldine Van der Auwera, longtime custodian of the GATK user community, and Brian O’Connor of the UC Santa Cruz Genomics Institute, guide you through the process. You’ll learn by working with real data and genomics algorithms from the field. This book covers: Essential genomics and computing technology background Basic cloud computing operations Getting started with GATK, plus three major GATK Best Practices pipelines Automating analysis with scripted workflows using WDL and Cromwell Scaling up workflow execution in the cloud, including parallelization and cost optimization Interactive analysis in the cloud using Jupyter notebooks Secure collaboration and computational reproducibility using Terra
Publisher: O'Reilly Media
ISBN: 1491975164
Category : Computers
Languages : en
Pages : 496
Book Description
Data in the genomics field is booming. In just a few years, organizations such as the National Institutes of Health (NIH) will host 50+ petabytes—or over 50 million gigabytes—of genomic data, and they’re turning to cloud infrastructure to make that data available to the research community. How do you adapt analysis tools and protocols to access and analyze that volume of data in the cloud? With this practical book, researchers will learn how to work with genomics algorithms using open source tools including the Genome Analysis Toolkit (GATK), Docker, WDL, and Terra. Geraldine Van der Auwera, longtime custodian of the GATK user community, and Brian O’Connor of the UC Santa Cruz Genomics Institute, guide you through the process. You’ll learn by working with real data and genomics algorithms from the field. This book covers: Essential genomics and computing technology background Basic cloud computing operations Getting started with GATK, plus three major GATK Best Practices pipelines Automating analysis with scripted workflows using WDL and Cromwell Scaling up workflow execution in the cloud, including parallelization and cost optimization Interactive analysis in the cloud using Jupyter notebooks Secure collaboration and computational reproducibility using Terra