Bayesian Statistics, A Review

Bayesian Statistics, A Review PDF Author: D. V. Lindley
Publisher: SIAM
ISBN: 9781611970654
Category : Mathematics
Languages : en
Pages : 88

Get Book Here

Book Description
A study of those statistical ideas that use a probability distribution over parameter space. The first part describes the axiomatic basis in the concept of coherence and the implications of this for sampling theory statistics. The second part discusses the use of Bayesian ideas in many branches of statistics.

Bayesian Statistics, A Review

Bayesian Statistics, A Review PDF Author: D. V. Lindley
Publisher: SIAM
ISBN: 9781611970654
Category : Mathematics
Languages : en
Pages : 88

Get Book Here

Book Description
A study of those statistical ideas that use a probability distribution over parameter space. The first part describes the axiomatic basis in the concept of coherence and the implications of this for sampling theory statistics. The second part discusses the use of Bayesian ideas in many branches of statistics.

Bayesian Statistics the Fun Way

Bayesian Statistics the Fun Way PDF Author: Will Kurt
Publisher: No Starch Press
ISBN: 1593279566
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to: - How to measure your own level of uncertainty in a conclusion or belief - Calculate Bayes theorem and understand what it's useful for - Find the posterior, likelihood, and prior to check the accuracy of your conclusions - Calculate distributions to see the range of your data - Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.

Bayesian Statistics for Beginners

Bayesian Statistics for Beginners PDF Author: Therese M. Donovan
Publisher:
ISBN: 0198841299
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
Bayesian statistics is currently undergoing something of a renaissance. At its heart is a method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available. It is an approach that is ideally suited to making initial assessments based on incomplete or imperfect information; as that information is gathered and disseminated, the Bayesian approach corrects or replaces the assumptions and alters its decision-making accordingly to generate a new set of probabilities. As new data/evidence becomes available the probability for a particular hypothesis can therefore be steadily refined and revised. It is very well-suited to the scientific method in general and is widely used across the social, biological, medical, and physical sciences. Key to this book's novel and informal perspective is its unique pedagogy, a question and answer approach that utilizes accessible language, humor, plentiful illustrations, and frequent reference to on-line resources. Bayesian Statistics for Beginners is an introductory textbook suitable for senior undergraduate and graduate students, professional researchers, and practitioners seeking to improve their understanding of the Bayesian statistical techniques they routinely use for data analysis in the life and medical sciences, psychology, public health, business, and other fields.

Introduction to Bayesian Statistics

Introduction to Bayesian Statistics PDF Author: William M. Bolstad
Publisher: John Wiley & Sons
ISBN: 1118619218
Category : Mathematics
Languages : en
Pages : 353

Get Book Here

Book Description
Praise for the First Edition "I cannot think of a better book for teachers of introductory statistics who want a readable and pedagogically sound text to introduce Bayesian statistics." —Statistics in Medical Research "[This book] is written in a lucid conversational style, which is so rare in mathematical writings. It does an excellent job of presenting Bayesian statistics as a perfectly reasonable approach to elementary problems in statistics." —STATS: The Magazine for Students of Statistics, American Statistical Association "Bolstad offers clear explanations of every concept and method making the book accessible and valuable to undergraduate and graduate students alike." —Journal of Applied Statistics The use of Bayesian methods in applied statistical analysis has become increasingly popular, yet most introductory statistics texts continue to only present the subject using frequentist methods. Introduction to Bayesian Statistics, Second Edition focuses on Bayesian methods that can be used for inference, and it also addresses how these methods compare favorably with frequentist alternatives. Teaching statistics from the Bayesian perspective allows for direct probability statements about parameters, and this approach is now more relevant than ever due to computer programs that allow practitioners to work on problems that contain many parameters. This book uniquely covers the topics typically found in an introductory statistics book—but from a Bayesian perspective—giving readers an advantage as they enter fields where statistics is used. This Second Edition provides: Extended coverage of Poisson and Gamma distributions Two new chapters on Bayesian inference for Poisson observations and Bayesian inference for the standard deviation for normal observations A twenty-five percent increase in exercises with selected answers at the end of the book A calculus refresher appendix and a summary on the use of statistical tables New computer exercises that use R functions and Minitab® macros for Bayesian analysis and Monte Carlo simulations Introduction to Bayesian Statistics, Second Edition is an invaluable textbook for advanced undergraduate and graduate-level statistics courses as well as a practical reference for statisticians who require a working knowledge of Bayesian statistics.

Bayesian Core: A Practical Approach to Computational Bayesian Statistics

Bayesian Core: A Practical Approach to Computational Bayesian Statistics PDF Author: Jean-Michel Marin
Publisher: Springer Science & Business Media
ISBN: 0387389792
Category : Computers
Languages : en
Pages : 265

Get Book Here

Book Description
This Bayesian modeling book provides the perfect entry for gaining a practical understanding of Bayesian methodology. It focuses on standard statistical models and is backed up by discussed real datasets available from the book website.

A Student’s Guide to Bayesian Statistics

A Student’s Guide to Bayesian Statistics PDF Author: Ben Lambert
Publisher: SAGE
ISBN: 1526418282
Category : Mathematics
Languages : en
Pages : 521

Get Book Here

Book Description
Without sacrificing technical integrity for the sake of simplicity, the author draws upon accessible, student-friendly language to provide approachable instruction perfectly aimed at statistics and Bayesian newcomers.

Bayesian Data Analysis, Third Edition

Bayesian Data Analysis, Third Edition PDF Author: Andrew Gelman
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677

Get Book Here

Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Think Bayes

Think Bayes PDF Author: Allen Downey
Publisher: "O'Reilly Media, Inc."
ISBN: 1491945443
Category : Computers
Languages : en
Pages : 213

Get Book Here

Book Description
If you know how to program with Python, and know a little about probability, you're ready to tackle Bayesian statistics. This book shows you how to use Python code instead of math to help you learn Bayesian fundamentals. Once you get the math out of the way, you'll be able to apply these techniques to real-world problems.

Bayesian Statistics

Bayesian Statistics PDF Author: S. James Press
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
An introduction to Bayesian statistics, with emphasis on interpretation of theory, and application of Bayesian ideas to practical problems. First part covers basic issues and principles, such as subjective probability, Bayesian inference and decision making, the likelihood principle, predictivism, and numerical methods of approximating posterior distributions, and includes a listing of Bayesian computer programs. Second part is devoted to models and applications, including univariate and multivariate regression models, the general linear model, Bayesian classification and discrimination, and a case study of how disputed authorship of some of the Federalist Papers was resolved via Bayesian analysis. Includes biographical material on Thomas Bayes, and a reproduction of Bayes's original essay. Contains exercises.

Bayesian Statistics for the Social Sciences

Bayesian Statistics for the Social Sciences PDF Author: David Kaplan
Publisher: Guilford Publications
ISBN: 1462516513
Category : Psychology
Languages : en
Pages : 337

Get Book Here

Book Description
Bridging the gap between traditional classical statistics and a Bayesian approach, David Kaplan provides readers with the concepts and practical skills they need to apply Bayesian methodologies to their data analysis problems. Part I addresses the elements of Bayesian inference, including exchangeability, likelihood, prior/posterior distributions, and the Bayesian central limit theorem. Part II covers Bayesian hypothesis testing, model building, and linear regression analysis, carefully explaining the differences between the Bayesian and frequentist approaches. Part III extends Bayesian statistics to multilevel modeling and modeling for continuous and categorical latent variables. Kaplan closes with a discussion of philosophical issues and argues for an "evidence-based" framework for the practice of Bayesian statistics. User-Friendly Features *Includes worked-through, substantive examples, using large-scale educational and social science databases, such as PISA (Program for International Student Assessment) and the LSAY (Longitudinal Study of American Youth). *Utilizes open-source R software programs available on CRAN (such as MCMCpack and rjags); readers do not have to master the R language and can easily adapt the example programs to fit individual needs. *Shows readers how to carefully warrant priors on the basis of empirical data. *Companion website features data and code for the book's examples, plus other resources.