Bayesian Inference for Partially Identified Models

Bayesian Inference for Partially Identified Models PDF Author: Paul Gustafson
Publisher: CRC Press
ISBN: 1439869405
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description
Bayesian Inference for Partially Identified Models: Exploring the Limits of Limited Data shows how the Bayesian approach to inference is applicable to partially identified models (PIMs) and examines the performance of Bayesian procedures in partially identified contexts. Drawing on his many years of research in this area, the author presents a thorough overview of the statistical theory, properties, and applications of PIMs. The book first describes how reparameterization can assist in computing posterior quantities and providing insight into the properties of Bayesian estimators. It next compares partial identification and model misspecification, discussing which is the lesser of the two evils. The author then works through PIM examples in depth, examining the ramifications of partial identification in terms of how inferences change and the extent to which they sharpen as more data accumulate. He also explains how to characterize the value of information obtained from data in a partially identified context and explores some recent applications of PIMs. In the final chapter, the author shares his thoughts on the past and present state of research on partial identification. This book helps readers understand how to use Bayesian methods for analyzing PIMs. Readers will recognize under what circumstances a posterior distribution on a target parameter will be usefully narrow versus uselessly wide.

Bayesian Inference for Partially Identified Models

Bayesian Inference for Partially Identified Models PDF Author: Paul Gustafson
Publisher: CRC Press
ISBN: 1439869405
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description
Bayesian Inference for Partially Identified Models: Exploring the Limits of Limited Data shows how the Bayesian approach to inference is applicable to partially identified models (PIMs) and examines the performance of Bayesian procedures in partially identified contexts. Drawing on his many years of research in this area, the author presents a thorough overview of the statistical theory, properties, and applications of PIMs. The book first describes how reparameterization can assist in computing posterior quantities and providing insight into the properties of Bayesian estimators. It next compares partial identification and model misspecification, discussing which is the lesser of the two evils. The author then works through PIM examples in depth, examining the ramifications of partial identification in terms of how inferences change and the extent to which they sharpen as more data accumulate. He also explains how to characterize the value of information obtained from data in a partially identified context and explores some recent applications of PIMs. In the final chapter, the author shares his thoughts on the past and present state of research on partial identification. This book helps readers understand how to use Bayesian methods for analyzing PIMs. Readers will recognize under what circumstances a posterior distribution on a target parameter will be usefully narrow versus uselessly wide.

Bayesian Inference for Partially Identified Models

Bayesian Inference for Partially Identified Models PDF Author: Paul Gustafson
Publisher: CRC Press
ISBN: 9780367570538
Category : Bayesian statistical decision theory
Languages : en
Pages : 196

Get Book Here

Book Description
This book shows how the Bayesian approach to inference is applicable to partially identified models (PIMs) and examines the performance of Bayesian procedures in partially identified contexts. Drawing on his many years of research in this area, the author presents a thorough overview of the statistical theory, properties, and applications of PIM

Bayesian Inference for Partially Identified Models

Bayesian Inference for Partially Identified Models PDF Author: Paul Gustafson
Publisher: Chapman and Hall/CRC
ISBN: 9781439869390
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
Bayesian Inference for Partially Identified Models: Exploring the Limits of Limited Data shows how the Bayesian approach to inference is applicable to partially identified models (PIMs) and examines the performance of Bayesian procedures in partially identified contexts. Drawing on his many years of research in this area, the author presents a thorough overview of the statistical theory, properties, and applications of PIMs. The book first describes how reparameterization can assist in computing posterior quantities and providing insight into the properties of Bayesian estimators. It next compares partial identification and model misspecification, discussing which is the lesser of the two evils. The author then works through PIM examples in depth, examining the ramifications of partial identification in terms of how inferences change and the extent to which they sharpen as more data accumulate. He also explains how to characterize the value of information obtained from data in a partially identified context and explores some recent applications of PIMs. In the final chapter, the author shares his thoughts on the past and present state of research on partial identification. This book helps readers understand how to use Bayesian methods for analyzing PIMs. Readers will recognize under what circumstances a posterior distribution on a target parameter will be usefully narrow versus uselessly wide.

Bayesian inference with INLA

Bayesian inference with INLA PDF Author: Virgilio Gomez-Rubio
Publisher: CRC Press
ISBN: 1351707205
Category : Mathematics
Languages : en
Pages : 330

Get Book Here

Book Description
The integrated nested Laplace approximation (INLA) is a recent computational method that can fit Bayesian models in a fraction of the time required by typical Markov chain Monte Carlo (MCMC) methods. INLA focuses on marginal inference on the model parameters of latent Gaussian Markov random fields models and exploits conditional independence properties in the model for computational speed. Bayesian Inference with INLA provides a description of INLA and its associated R package for model fitting. This book describes the underlying methodology as well as how to fit a wide range of models with R. Topics covered include generalized linear mixed-effects models, multilevel models, spatial and spatio-temporal models, smoothing methods, survival analysis, imputation of missing values, and mixture models. Advanced features of the INLA package and how to extend the number of priors and latent models available in the package are discussed. All examples in the book are fully reproducible and datasets and R code are available from the book website. This book will be helpful to researchers from different areas with some background in Bayesian inference that want to apply the INLA method in their work. The examples cover topics on biostatistics, econometrics, education, environmental science, epidemiology, public health, and the social sciences.

Advances in Economics and Econometrics

Advances in Economics and Econometrics PDF Author: Econometric Society. World Congress
Publisher: Cambridge University Press
ISBN: 1108414982
Category : Econometrics
Languages : en
Pages : 381

Get Book Here

Book Description
"This is the first of two volumes containing papers and commentaries presented at the Eleventh World Congress of the Econometric Society, held in Montréal, Canada in August 2015. These papers provide state-of-the-art guides to the most important recent research in economics today. This book includes surveys and interpretations of key developments in economics and econometrics, and discussion of future directions for a wide variety of topics, covering both theory and application. These volumes provide a unique, accessible survey of progress on the discipline, written by leading specialists in their fields. The first volume includes theoretical and applied papers addressing topics such as dynamic mechanism design, agency problems, and networks"--

Missing Data Methods

Missing Data Methods PDF Author: David M. Drukker
Publisher: Emerald Group Publishing
ISBN: 1780525249
Category : Business & Economics
Languages : en
Pages : 352

Get Book Here

Book Description
Contains 16 chapters authored by specialists in the field, covering topics such as: Missing-Data Imputation in Nonstationary Panel Data Models; Markov Switching Models in Empirical Finance; Bayesian Analysis of Multivariate Sample Selection Models Using Gaussian Copulas; and, Consistent Estimation and Orthogonality.

Handbook of Measurement Error Models

Handbook of Measurement Error Models PDF Author: Grace Y. Yi
Publisher: CRC Press
ISBN: 1351588591
Category : Mathematics
Languages : en
Pages : 648

Get Book Here

Book Description
Measurement error arises ubiquitously in applications and has been of long-standing concern in a variety of fields, including medical research, epidemiological studies, economics, environmental studies, and survey research. While several research monographs are available to summarize methods and strategies of handling different measurement error problems, research in this area continues to attract extensive attention. The Handbook of Measurement Error Models provides overviews of various topics on measurement error problems. It collects carefully edited chapters concerning issues of measurement error and evolving statistical methods, with a good balance of methodology and applications. It is prepared for readers who wish to start research and gain insights into challenges, methods, and applications related to error-prone data. It also serves as a reference text on statistical methods and applications pertinent to measurement error models, for researchers and data analysts alike. Features: Provides an account of past development and modern advancement concerning measurement error problems Highlights the challenges induced by error-contaminated data Introduces off-the-shelf methods for mitigating deleterious impacts of measurement error Describes state-of-the-art strategies for conducting in-depth research

Asymptotic Analysis of Mixed Effects Models

Asymptotic Analysis of Mixed Effects Models PDF Author: Jiming Jiang
Publisher: CRC Press
ISBN: 1351645595
Category : Mathematics
Languages : en
Pages : 235

Get Book Here

Book Description
Large sample techniques are fundamental to all fields of statistics. Mixed effects models, including linear mixed models, generalized linear mixed models, non-linear mixed effects models, and non-parametric mixed effects models are complex models, yet, these models are extensively used in practice. This monograph provides a comprehensive account of asymptotic analysis of mixed effects models. The monograph is suitable for researchers and graduate students who wish to learn about asymptotic tools and research problems in mixed effects models. It may also be used as a reference book for a graduate-level course on mixed effects models, or asymptotic analysis.

Bayesian Inference in the Social Sciences

Bayesian Inference in the Social Sciences PDF Author: Ivan Jeliazkov
Publisher: John Wiley & Sons
ISBN: 1118771125
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
Presents new models, methods, and techniques and considers important real-world applications in political science, sociology, economics, marketing, and finance Emphasizing interdisciplinary coverage, Bayesian Inference in the Social Sciences builds upon the recent growth in Bayesian methodology and examines an array of topics in model formulation, estimation, and applications. The book presents recent and trending developments in a diverse, yet closely integrated, set of research topics within the social sciences and facilitates the transmission of new ideas and methodology across disciplines while maintaining manageability, coherence, and a clear focus. Bayesian Inference in the Social Sciences features innovative methodology and novel applications in addition to new theoretical developments and modeling approaches, including the formulation and analysis of models with partial observability, sample selection, and incomplete data. Additional areas of inquiry include a Bayesian derivation of empirical likelihood and method of moment estimators, and the analysis of treatment effect models with endogeneity. The book emphasizes practical implementation, reviews and extends estimation algorithms, and examines innovative applications in a multitude of fields. Time series techniques and algorithms are discussed for stochastic volatility, dynamic factor, and time-varying parameter models. Additional features include: Real-world applications and case studies that highlight asset pricing under fat-tailed distributions, price indifference modeling and market segmentation, analysis of dynamic networks, ethnic minorities and civil war, school choice effects, and business cycles and macroeconomic performance State-of-the-art computational tools and Markov chain Monte Carlo algorithms with related materials available via the book’s supplemental website Interdisciplinary coverage from well-known international scholars and practitioners Bayesian Inference in the Social Sciences is an ideal reference for researchers in economics, political science, sociology, and business as well as an excellent resource for academic, government, and regulation agencies. The book is also useful for graduate-level courses in applied econometrics, statistics, mathematical modeling and simulation, numerical methods, computational analysis, and the social sciences.

Topics in Applied Statistics

Topics in Applied Statistics PDF Author: Mingxiu Hu
Publisher: Springer Science & Business Media
ISBN: 1461478464
Category : Medical
Languages : en
Pages : 340

Get Book Here

Book Description
This volume presents 27 selected papers in topics that range from statistical applications in business and finance to applications in clinical trials and biomarker analysis. All papers feature original, peer-reviewed content. The editors intentionally selected papers that cover many topics so that the volume will serve the whole statistical community and a variety of research interests. The papers represent select contributions to the 21st ICSA Applied Statistics Symposium. The International Chinese Statistical Association (ICSA) Symposium took place between the 23rd and 26th of June, 2012 in Boston, Massachusetts. It was co-sponsored by the International Society for Biopharmaceutical Statistics (ISBS) and American Statistical Association (ASA). This is the inaugural proceedings volume to share research from the ICSA Applied Statistics Symposium.