Bayesian Implementation

Bayesian Implementation PDF Author: T. Palfrey
Publisher: Taylor & Francis
ISBN: 1136458921
Category : Business & Economics
Languages : en
Pages : 128

Get Book Here

Book Description
The authors present a basic model of the Bayesian implementation problem and then consider its application in areas including classical pure exchange economies, public goods provision, auctions and bargaining.

Bayesian Implementation

Bayesian Implementation PDF Author: T. Palfrey
Publisher: Taylor & Francis
ISBN: 1136458921
Category : Business & Economics
Languages : en
Pages : 128

Get Book Here

Book Description
The authors present a basic model of the Bayesian implementation problem and then consider its application in areas including classical pure exchange economies, public goods provision, auctions and bargaining.

User Modeling, Adaptation, and Personalization

User Modeling, Adaptation, and Personalization PDF Author: Paul De Bra
Publisher: Springer Science & Business Media
ISBN: 3642134696
Category : Computers
Languages : en
Pages : 445

Get Book Here

Book Description
The LNCS series reports state-of-the-art results in computer science research, development, and education, at a high level and in both printed and electronic form. Enjoying tight cooperation with the R&D community, with numerous individuals, as well as with prestigious organizations and societies, LNCS has grown into the most comprehensive computer science research forum available. The scope of LNCS, including its subseries LNAI and LNBI, spans the whole range of computer science and information technology including interdisciplinary topics in a variety of application fields. In parallel to the printed book, each new volume is published electronically in LNCS Online. Detailed information on LNCS can be found at www.springer.com/Incs Proposals for publication should be sent to LNCS Editorial, Tiergartenstr. 17, 69121 Heidelberg, Germany E-mail: [email protected]

Bayesian Modeling and Computation in Python

Bayesian Modeling and Computation in Python PDF Author: Osvaldo A. Martin
Publisher: CRC Press
ISBN: 1000520048
Category : Business & Economics
Languages : en
Pages : 421

Get Book Here

Book Description
Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory. The book starts with a refresher of the Bayesian Inference concepts. The second chapter introduces modern methods for Exploratory Analysis of Bayesian Models. With an understanding of these two fundamentals the subsequent chapters talk through various models including linear regressions, splines, time series, Bayesian additive regression trees. The final chapters include Approximate Bayesian Computation, end to end case studies showing how to apply Bayesian modelling in different settings, and a chapter about the internals of probabilistic programming languages. Finally the last chapter serves as a reference for the rest of the book by getting closer into mathematical aspects or by extending the discussion of certain topics. This book is written by contributors of PyMC3, ArviZ, Bambi, and Tensorflow Probability among other libraries.

Bayesian Modeling of Spatio-Temporal Data with R

Bayesian Modeling of Spatio-Temporal Data with R PDF Author: Sujit Sahu
Publisher: CRC Press
ISBN: 1000543692
Category : Mathematics
Languages : en
Pages : 511

Get Book Here

Book Description
Applied sciences, both physical and social, such as atmospheric, biological, climate, demographic, economic, ecological, environmental, oceanic and political, routinely gather large volumes of spatial and spatio-temporal data in order to make wide ranging inference and prediction. Ideally such inferential tasks should be approached through modelling, which aids in estimation of uncertainties in all conclusions drawn from such data. Unified Bayesian modelling, implemented through user friendly software packages, provides a crucial key to unlocking the full power of these methods for solving challenging practical problems. Key features of the book: • Accessible detailed discussion of a majority of all aspects of Bayesian methods and computations with worked examples, numerical illustrations and exercises • A spatial statistics jargon buster chapter that enables the reader to build up a vocabulary without getting clouded in modeling and technicalities • Computation and modeling illustrations are provided with the help of the dedicated R package bmstdr, allowing the reader to use well-known packages and platforms, such as rstan, INLA, spBayes, spTimer, spTDyn, CARBayes, CARBayesST, etc • Included are R code notes detailing the algorithms used to produce all the tables and figures, with data and code available via an online supplement • Two dedicated chapters discuss practical examples of spatio-temporal modeling of point referenced and areal unit data • Throughout, the emphasis has been on validating models by splitting data into test and training sets following on the philosophy of machine learning and data science This book is designed to make spatio-temporal modeling and analysis accessible and understandable to a wide audience of students and researchers, from mathematicians and statisticians to practitioners in the applied sciences. It presents most of the modeling with the help of R commands written in a purposefully developed R package to facilitate spatio-temporal modeling. It does not compromise on rigour, as it presents the underlying theories of Bayesian inference and computation in standalone chapters, which would be appeal those interested in the theoretical details. By avoiding hard core mathematics and calculus, this book aims to be a bridge that removes the statistical knowledge gap from among the applied scientists.

Cryo-EM Part B: 3-D Reconstruction

Cryo-EM Part B: 3-D Reconstruction PDF Author:
Publisher: Academic Press
ISBN: 0123849926
Category : Science
Languages : en
Pages : 472

Get Book Here

Book Description
This volume is dedicated to a description of the instruments, samples, protocols, and analyses that belong to cryo-EM. It emphasizes the relatedness of the ideas, instrumentation, and methods underlying all cryo-EM approaches, which allow practitioners to easily move between them. Within each section, the articles are ordered according to the most common symmetry of the sample to which their methods are applied. - Includes time-tested core methods and new innovations applicable to any researcher - Methods included are useful to both established researchers and newcomers to the field - Relevant background and reference information given for procedures can be used as a guide

Bayesian Multiple Target Tracking, Second Edition

Bayesian Multiple Target Tracking, Second Edition PDF Author: Lawrence D. Stone
Publisher: Artech House
ISBN: 1608075532
Category : Technology & Engineering
Languages : en
Pages : 315

Get Book Here

Book Description
This second edition has undergone substantial revision from the 1999 first edition, recognizing that a lot has changed in the multiple target tracking field. One of the most dramatic changes is in the widespread use of particle filters to implement nonlinear, non-Gaussian Bayesian trackers. This book views multiple target tracking as a Bayesian inference problem. Within this framework it develops the theory of single target tracking, multiple target tracking, and likelihood ratio detection and tracking. In addition to providing a detailed description of a basic particle filter that implements the Bayesian single target recursion, this resource provides numerous examples that involve the use of particle filters. With these examples illustrating the developed concepts, algorithms, and approaches -- the book helps radar engineers develop tracking solutions when observations are non-linear functions of target state, when the target state distributions or measurement error distributions are not Gaussian, in low data rate and low signal to noise ratio situations, and when notions of contact and association are merged or unresolved among more than one target.

Bayesian Learning for Neural Networks

Bayesian Learning for Neural Networks PDF Author: Radford M. Neal
Publisher: Springer Science & Business Media
ISBN: 1461207452
Category : Mathematics
Languages : en
Pages : 194

Get Book Here

Book Description
Artificial "neural networks" are widely used as flexible models for classification and regression applications, but questions remain about how the power of these models can be safely exploited when training data is limited. This book demonstrates how Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional training methods. Insight into the nature of these complex Bayesian models is provided by a theoretical investigation of the priors over functions that underlie them. A practical implementation of Bayesian neural network learning using Markov chain Monte Carlo methods is also described, and software for it is freely available over the Internet. Presupposing only basic knowledge of probability and statistics, this book should be of interest to researchers in statistics, engineering, and artificial intelligence.

Bayesian Time Series Models

Bayesian Time Series Models PDF Author: David Barber
Publisher: Cambridge University Press
ISBN: 0521196760
Category : Computers
Languages : en
Pages : 432

Get Book Here

Book Description
The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.

Robust Mechanism Design

Robust Mechanism Design PDF Author: Dirk Bergemann
Publisher: World Scientific
ISBN: 9814374598
Category : Business & Economics
Languages : en
Pages : 471

Get Book Here

Book Description
Robust Mechanism Design: the Role of Private Information and Higher Order Beliefs.

Bayesian Modeling Using WinBUGS

Bayesian Modeling Using WinBUGS PDF Author: Ioannis Ntzoufras
Publisher: John Wiley & Sons
ISBN: 1118210352
Category : Mathematics
Languages : en
Pages : 477

Get Book Here

Book Description
A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all data sets and code are available on the book's related Web site. Requiring only a working knowledge of probability theory and statistics, Bayesian Modeling Using WinBUGS serves as an excellent book for courses on Bayesian statistics at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of statistics, actuarial science, medicine, and the social sciences who use WinBUGS in their everyday work.