Author: Jeffrey H. Dorfman
Publisher: Springer Science & Business Media
ISBN: 0387226354
Category : Business & Economics
Languages : en
Pages : 115
Book Description
Providing researchers in economics, finance, and statistics with an up-to-date introduction to applying Bayesian techniques to empirical studies, this book covers the full range of the new numerical techniques which have been developed over the last thirty years. Notably, these are: Monte Carlo sampling, antithetic replication, importance sampling, and Gibbs sampling. The author covers both advances in theory and modern approaches to numerical and applied problems, and includes applications drawn from a variety of different fields within economics, while also providing a quick overview of the underlying statistical ideas of Bayesian thought. The result is a book which presents a roadmap of applied economic questions that can now be addressed empirically with Bayesian methods. Consequently, many researchers will find this a readily readable survey of this growing topic.
Bayesian Economics Through Numerical Methods
Numerical Bayesian Methods Applied to Signal Processing
Author: Joseph J.K. O Ruanaidh
Publisher: Springer Science & Business Media
ISBN: 1461207177
Category : Computers
Languages : en
Pages : 256
Book Description
This book is concerned with the processing of signals that have been sam pled and digitized. The fundamental theory behind Digital Signal Process ing has been in existence for decades and has extensive applications to the fields of speech and data communications, biomedical engineering, acous tics, sonar, radar, seismology, oil exploration, instrumentation and audio signal processing to name but a few [87]. The term "Digital Signal Processing", in its broadest sense, could apply to any operation carried out on a finite set of measurements for whatever purpose. A book on signal processing would usually contain detailed de scriptions of the standard mathematical machinery often used to describe signals. It would also motivate an approach to real world problems based on concepts and results developed in linear systems theory, that make use of some rather interesting properties of the time and frequency domain representations of signals. While this book assumes some familiarity with traditional methods the emphasis is altogether quite different. The aim is to describe general methods for carrying out optimal signal processing.
Publisher: Springer Science & Business Media
ISBN: 1461207177
Category : Computers
Languages : en
Pages : 256
Book Description
This book is concerned with the processing of signals that have been sam pled and digitized. The fundamental theory behind Digital Signal Process ing has been in existence for decades and has extensive applications to the fields of speech and data communications, biomedical engineering, acous tics, sonar, radar, seismology, oil exploration, instrumentation and audio signal processing to name but a few [87]. The term "Digital Signal Processing", in its broadest sense, could apply to any operation carried out on a finite set of measurements for whatever purpose. A book on signal processing would usually contain detailed de scriptions of the standard mathematical machinery often used to describe signals. It would also motivate an approach to real world problems based on concepts and results developed in linear systems theory, that make use of some rather interesting properties of the time and frequency domain representations of signals. While this book assumes some familiarity with traditional methods the emphasis is altogether quite different. The aim is to describe general methods for carrying out optimal signal processing.
Bayesian Econometrics
Author: Gary Koop
Publisher: Wiley-Interscience
ISBN:
Category : Business & Economics
Languages : en
Pages : 382
Book Description
Researchers in many fields are increasingly finding the Bayesian approach to statistics to be an attractive one. This book introduces the reader to the use of Bayesian methods in the field of econometrics at the advanced undergraduate or graduate level. The book is self-contained and does not require that readers have previous training in econometrics. The focus is on models used by applied economists and the computational techniques necessary to implement Bayesian methods when doing empirical work. Topics covered in the book include the regression model (and variants applicable for use with panel data), time series models, models for qualitative or censored data, nonparametric methods and Bayesian model averaging. The book includes numerous empirical examples and the website associated with it contains data sets and computer programs to help the student develop the computational skills of modern Bayesian econometrics.
Publisher: Wiley-Interscience
ISBN:
Category : Business & Economics
Languages : en
Pages : 382
Book Description
Researchers in many fields are increasingly finding the Bayesian approach to statistics to be an attractive one. This book introduces the reader to the use of Bayesian methods in the field of econometrics at the advanced undergraduate or graduate level. The book is self-contained and does not require that readers have previous training in econometrics. The focus is on models used by applied economists and the computational techniques necessary to implement Bayesian methods when doing empirical work. Topics covered in the book include the regression model (and variants applicable for use with panel data), time series models, models for qualitative or censored data, nonparametric methods and Bayesian model averaging. The book includes numerous empirical examples and the website associated with it contains data sets and computer programs to help the student develop the computational skills of modern Bayesian econometrics.
The Oxford Handbook of Bayesian Econometrics
Author: John Geweke
Publisher: Oxford University Press
ISBN: 0191618268
Category : Business & Economics
Languages : en
Pages : 576
Book Description
Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.
Publisher: Oxford University Press
ISBN: 0191618268
Category : Business & Economics
Languages : en
Pages : 576
Book Description
Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.
Bayesian Estimation of DSGE Models
Author: Edward P. Herbst
Publisher: Princeton University Press
ISBN: 0691161089
Category : Business & Economics
Languages : en
Pages : 295
Book Description
Dynamic stochastic general equilibrium (DSGE) models have become one of the workhorses of modern macroeconomics and are extensively used for academic research as well as forecasting and policy analysis at central banks. This book introduces readers to state-of-the-art computational techniques used in the Bayesian analysis of DSGE models. The book covers Markov chain Monte Carlo techniques for linearized DSGE models, novel sequential Monte Carlo methods that can be used for parameter inference, and the estimation of nonlinear DSGE models based on particle filter approximations of the likelihood function. The theoretical foundations of the algorithms are discussed in depth, and detailed empirical applications and numerical illustrations are provided. The book also gives invaluable advice on how to tailor these algorithms to specific applications and assess the accuracy and reliability of the computations. Bayesian Estimation of DSGE Models is essential reading for graduate students, academic researchers, and practitioners at policy institutions.
Publisher: Princeton University Press
ISBN: 0691161089
Category : Business & Economics
Languages : en
Pages : 295
Book Description
Dynamic stochastic general equilibrium (DSGE) models have become one of the workhorses of modern macroeconomics and are extensively used for academic research as well as forecasting and policy analysis at central banks. This book introduces readers to state-of-the-art computational techniques used in the Bayesian analysis of DSGE models. The book covers Markov chain Monte Carlo techniques for linearized DSGE models, novel sequential Monte Carlo methods that can be used for parameter inference, and the estimation of nonlinear DSGE models based on particle filter approximations of the likelihood function. The theoretical foundations of the algorithms are discussed in depth, and detailed empirical applications and numerical illustrations are provided. The book also gives invaluable advice on how to tailor these algorithms to specific applications and assess the accuracy and reliability of the computations. Bayesian Estimation of DSGE Models is essential reading for graduate students, academic researchers, and practitioners at policy institutions.
Introduction to Modern Bayesian Econometrics
Author: Tony Lancaster
Publisher: Wiley-Blackwell
ISBN: 9781405117197
Category : Business & Economics
Languages : en
Pages : 401
Book Description
Almost two hundred and forty years ago, an English clergyman named Thomas Bayes developed a method to calculate the chances of uncertain events. While his method has extensive applications to the work of applied economists, it is only recent advances in computing that have made it possible to exploit the full power of the Bayesian way of doing applied economics.In this new and expanding area, Tony Lancasters text provides a comprehensive introduction to the Bayesian way of doing applied economics. Using clear explanations and practical illustrations and problems, the text presents innovative, computer-intensive ways for applied economists to use the Bayesian method.The Introduction emphasizes computation and the study of probability distributions by computer sampling, showing how these techniques can provide exact inferences about a wide range of econometric problems. Covering all the standard econometric models, including linear and non-linear regression using cross-sectional, time series, and panel data, it also details causal inference and inference about structural econometric models. In addition, each chapter includes numerical and graphical examples and demonstrates their solutions using the S programming language and Bugs software.
Publisher: Wiley-Blackwell
ISBN: 9781405117197
Category : Business & Economics
Languages : en
Pages : 401
Book Description
Almost two hundred and forty years ago, an English clergyman named Thomas Bayes developed a method to calculate the chances of uncertain events. While his method has extensive applications to the work of applied economists, it is only recent advances in computing that have made it possible to exploit the full power of the Bayesian way of doing applied economics.In this new and expanding area, Tony Lancasters text provides a comprehensive introduction to the Bayesian way of doing applied economics. Using clear explanations and practical illustrations and problems, the text presents innovative, computer-intensive ways for applied economists to use the Bayesian method.The Introduction emphasizes computation and the study of probability distributions by computer sampling, showing how these techniques can provide exact inferences about a wide range of econometric problems. Covering all the standard econometric models, including linear and non-linear regression using cross-sectional, time series, and panel data, it also details causal inference and inference about structural econometric models. In addition, each chapter includes numerical and graphical examples and demonstrates their solutions using the S programming language and Bugs software.
Contemporary Bayesian Econometrics and Statistics
Author: John Geweke
Publisher: John Wiley & Sons
ISBN: 0471744727
Category : Mathematics
Languages : en
Pages : 322
Book Description
Tools to improve decision making in an imperfect world This publication provides readers with a thorough understanding of Bayesian analysis that is grounded in the theory of inference and optimal decision making. Contemporary Bayesian Econometrics and Statistics provides readers with state-of-the-art simulation methods and models that are used to solve complex real-world problems. Armed with a strong foundation in both theory and practical problem-solving tools, readers discover how to optimize decision making when faced with problems that involve limited or imperfect data. The book begins by examining the theoretical and mathematical foundations of Bayesian statistics to help readers understand how and why it is used in problem solving. The author then describes how modern simulation methods make Bayesian approaches practical using widely available mathematical applications software. In addition, the author details how models can be applied to specific problems, including: * Linear models and policy choices * Modeling with latent variables and missing data * Time series models and prediction * Comparison and evaluation of models The publication has been developed and fine- tuned through a decade of classroom experience, and readers will find the author's approach very engaging and accessible. There are nearly 200 examples and exercises to help readers see how effective use of Bayesian statistics enables them to make optimal decisions. MATLAB? and R computer programs are integrated throughout the book. An accompanying Web site provides readers with computer code for many examples and datasets. This publication is tailored for research professionals who use econometrics and similar statistical methods in their work. With its emphasis on practical problem solving and extensive use of examples and exercises, this is also an excellent textbook for graduate-level students in a broad range of fields, including economics, statistics, the social sciences, business, and public policy.
Publisher: John Wiley & Sons
ISBN: 0471744727
Category : Mathematics
Languages : en
Pages : 322
Book Description
Tools to improve decision making in an imperfect world This publication provides readers with a thorough understanding of Bayesian analysis that is grounded in the theory of inference and optimal decision making. Contemporary Bayesian Econometrics and Statistics provides readers with state-of-the-art simulation methods and models that are used to solve complex real-world problems. Armed with a strong foundation in both theory and practical problem-solving tools, readers discover how to optimize decision making when faced with problems that involve limited or imperfect data. The book begins by examining the theoretical and mathematical foundations of Bayesian statistics to help readers understand how and why it is used in problem solving. The author then describes how modern simulation methods make Bayesian approaches practical using widely available mathematical applications software. In addition, the author details how models can be applied to specific problems, including: * Linear models and policy choices * Modeling with latent variables and missing data * Time series models and prediction * Comparison and evaluation of models The publication has been developed and fine- tuned through a decade of classroom experience, and readers will find the author's approach very engaging and accessible. There are nearly 200 examples and exercises to help readers see how effective use of Bayesian statistics enables them to make optimal decisions. MATLAB? and R computer programs are integrated throughout the book. An accompanying Web site provides readers with computer code for many examples and datasets. This publication is tailored for research professionals who use econometrics and similar statistical methods in their work. With its emphasis on practical problem solving and extensive use of examples and exercises, this is also an excellent textbook for graduate-level students in a broad range of fields, including economics, statistics, the social sciences, business, and public policy.
Case Studies in Bayesian Statistical Modelling and Analysis
Author: Clair L. Alston
Publisher: John Wiley & Sons
ISBN: 1118394321
Category : Mathematics
Languages : en
Pages : 411
Book Description
Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.
Publisher: John Wiley & Sons
ISBN: 1118394321
Category : Mathematics
Languages : en
Pages : 411
Book Description
Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.
Bayesian Econometric Methods
Author: Joshua Chan
Publisher: Cambridge University Press
ISBN: 1108423388
Category : Business & Economics
Languages : en
Pages : 491
Book Description
Illustrates Bayesian theory and application through a series of exercises in question and answer format.
Publisher: Cambridge University Press
ISBN: 1108423388
Category : Business & Economics
Languages : en
Pages : 491
Book Description
Illustrates Bayesian theory and application through a series of exercises in question and answer format.
Bayesian Inference in Dynamic Econometric Models
Author: Luc Bauwens
Publisher: OUP Oxford
ISBN: 0191588466
Category : Business & Economics
Languages : en
Pages : 370
Book Description
This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods.
Publisher: OUP Oxford
ISBN: 0191588466
Category : Business & Economics
Languages : en
Pages : 370
Book Description
This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods.