Basic Theory Of Fractional Differential Equations (Third Edition)

Basic Theory Of Fractional Differential Equations (Third Edition) PDF Author: Yong Zhou
Publisher: World Scientific
ISBN: 9811271704
Category : Mathematics
Languages : en
Pages : 516

Get Book Here

Book Description
This accessible monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary differential equations and evolution equations. It is self-contained and unified in presentation, and provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, Picard operators technique, critical point theory and semigroups theory. This book is based on the research work done so far by the author and other experts, and contains comprehensive up-to-date materials on the topic.In this third edition, four new topics have been added: Hilfer fractional evolution equations and infinite interval problems, oscillations and nonoscillations, fractional Hamiltonian systems, fractional Rayleigh-Stokes equations, and wave equations. The bibliography has also been updated and expanded.This book is useful to researchers, graduate or PhD students dealing with fractional calculus and applied analysis, differential equations, and related areas of research.

Basic Theory Of Fractional Differential Equations (Third Edition)

Basic Theory Of Fractional Differential Equations (Third Edition) PDF Author: Yong Zhou
Publisher: World Scientific
ISBN: 9811271704
Category : Mathematics
Languages : en
Pages : 516

Get Book Here

Book Description
This accessible monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary differential equations and evolution equations. It is self-contained and unified in presentation, and provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, Picard operators technique, critical point theory and semigroups theory. This book is based on the research work done so far by the author and other experts, and contains comprehensive up-to-date materials on the topic.In this third edition, four new topics have been added: Hilfer fractional evolution equations and infinite interval problems, oscillations and nonoscillations, fractional Hamiltonian systems, fractional Rayleigh-Stokes equations, and wave equations. The bibliography has also been updated and expanded.This book is useful to researchers, graduate or PhD students dealing with fractional calculus and applied analysis, differential equations, and related areas of research.

The Analysis of Fractional Differential Equations

The Analysis of Fractional Differential Equations PDF Author: Kai Diethelm
Publisher: Springer
ISBN: 3642145744
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.

Theory and Applications of Fractional Differential Equations

Theory and Applications of Fractional Differential Equations PDF Author: A.A. Kilbas
Publisher: Elsevier
ISBN: 9780444518323
Category : Mathematics
Languages : en
Pages : 550

Get Book Here

Book Description
This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.

Time-Fractional Differential Equations

Time-Fractional Differential Equations PDF Author: Adam Kubica
Publisher: Springer Nature
ISBN: 9811590664
Category : Mathematics
Languages : en
Pages : 138

Get Book Here

Book Description
This book aims to establish a foundation for fractional derivatives and fractional differential equations. The theory of fractional derivatives enables considering any positive order of differentiation. The history of research in this field is very long, with its origins dating back to Leibniz. Since then, many great mathematicians, such as Abel, have made contributions that cover not only theoretical aspects but also physical applications of fractional calculus. The fractional partial differential equations govern phenomena depending both on spatial and time variables and require more subtle treatments. Moreover, fractional partial differential equations are highly demanded model equations for solving real-world problems such as the anomalous diffusion in heterogeneous media. The studies of fractional partial differential equations have continued to expand explosively. However we observe that available mathematical theory for fractional partial differential equations is not still complete. In particular, operator-theoretical approaches are indispensable for some generalized categories of solutions such as weak solutions, but feasible operator-theoretic foundations for wide applications are not available in monographs. To make this monograph more readable, we are restricting it to a few fundamental types of time-fractional partial differential equations, forgoing many other important and exciting topics such as stability for nonlinear problems. However, we believe that this book works well as an introduction to mathematical research in such vast fields.

Fractional Differential Equations

Fractional Differential Equations PDF Author: Bangti Jin
Publisher: Springer Nature
ISBN: 303076043X
Category : Mathematics
Languages : en
Pages : 377

Get Book Here

Book Description
This graduate textbook provides a self-contained introduction to modern mathematical theory on fractional differential equations. It addresses both ordinary and partial differential equations with a focus on detailed solution theory, especially regularity theory under realistic assumptions on the problem data. The text includes an extensive bibliography, application-driven modeling, extensive exercises, and graphic illustrations throughout to complement its comprehensive presentation of the field. It is recommended for graduate students and researchers in applied and computational mathematics, particularly applied analysis, numerical analysis and inverse problems.

Fractional Calculus: An Introduction For Physicists (Third Edition)

Fractional Calculus: An Introduction For Physicists (Third Edition) PDF Author: Richard Herrmann
Publisher: World Scientific
ISBN: 981327459X
Category : Science
Languages : en
Pages : 635

Get Book Here

Book Description
'The third edition of this book is designed to carefully and coherently introduce fractional calculus to physicists, by applying the ideas to two distinct applications: classical problems and multi-particle quantum problems. There remain many open questions and the field remains an active area of research. Dr Herrmann’s book is an excellent introduction to this field of study.'Contemporary PhysicsThe book presents a concise introduction to the basic methods and strategies in fractional calculus which enables the reader to catch up with the state-of-the-art in this field and to participate and contribute in the development of this exciting research area.This book is devoted to the application of fractional calculus on physical problems. The fractional concept is applied to subjects in classical mechanics, image processing, folded potentials in cluster physics, infrared spectroscopy, group theory, quantum mechanics, nuclear physics, hadron spectroscopy up to quantum field theory and will surprise the reader with new intriguing insights.This new, extended edition includes additional chapters about numerical solution of the fractional Schrödinger equation, self-similarity and the geometric interpretation of non-isotropic fractional differential operators. Motivated by the positive response, new exercises with elaborated solutions are added, which significantly support a deeper understanding of the general aspects of the theory.Besides students as well as researchers in this field, this book will also be useful as a supporting medium for teachers teaching courses devoted to this subject.

Fractional Differential Equations

Fractional Differential Equations PDF Author: Anatoly Kochubei
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110571668
Category : Mathematics
Languages : en
Pages : 528

Get Book Here

Book Description
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.

Special Functions and Analysis of Differential Equations

Special Functions and Analysis of Differential Equations PDF Author: Praveen Agarwal
Publisher: CRC Press
ISBN: 1000078582
Category : Mathematics
Languages : en
Pages : 405

Get Book Here

Book Description
Differential Equations are very important tools in Mathematical Analysis. They are widely found in mathematics itself and in its applications to statistics, computing, electrical circuit analysis, dynamical systems, economics, biology, and so on. Recently there has been an increasing interest in and widely-extended use of differential equations and systems of fractional order (that is, of arbitrary order) as better models of phenomena in various physics, engineering, automatization, biology and biomedicine, chemistry, earth science, economics, nature, and so on. Now, new unified presentation and extensive development of special functions associated with fractional calculus are necessary tools, being related to the theory of differentiation and integration of arbitrary order (i.e., fractional calculus) and to the fractional order (or multi-order) differential and integral equations. This book provides learners with the opportunity to develop an understanding of advancements of special functions and the skills needed to apply advanced mathematical techniques to solve complex differential equations and Partial Differential Equations (PDEs). Subject matters should be strongly related to special functions involving mathematical analysis and its numerous applications. The main objective of this book is to highlight the importance of fundamental results and techniques of the theory of complex analysis for differential equations and PDEs and emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Specific topics include but are not limited to Partial differential equations Least squares on first-order system Sequence and series in functional analysis Special functions related to fractional (non-integer) order control systems and equations Various special functions related to generalized fractional calculus Operational method in fractional calculus Functional analysis and operator theory Mathematical physics Applications of numerical analysis and applied mathematics Computational mathematics Mathematical modeling This book provides the recent developments in special functions and differential equations and publishes high-quality, peer-reviewed book chapters in the area of nonlinear analysis, ordinary differential equations, partial differential equations, and related applications.

Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities

Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities PDF Author: Bashir Ahmad
Publisher: Springer
ISBN: 3319521411
Category : Mathematics
Languages : en
Pages : 420

Get Book Here

Book Description
This book focuses on the recent development of fractional differential equations, integro-differential equations, and inclusions and inequalities involving the Hadamard derivative and integral. Through a comprehensive study based in part on their recent research, the authors address the issues related to initial and boundary value problems involving Hadamard type differential equations and inclusions as well as their functional counterparts. The book covers fundamental concepts of multivalued analysis and introduces a new class of mixed initial value problems involving the Hadamard derivative and Riemann-Liouville fractional integrals. In later chapters, the authors discuss nonlinear Langevin equations as well as coupled systems of Langevin equations with fractional integral conditions. Focused and thorough, this book is a useful resource for readers and researchers interested in the area of fractional calculus.

Fractional Differentiation Inequalities

Fractional Differentiation Inequalities PDF Author: George A. Anastassiou
Publisher: Springer Science & Business Media
ISBN: 0387981284
Category : Mathematics
Languages : en
Pages : 672

Get Book Here

Book Description
In this book the author presents the Opial, Poincaré, Sobolev, Hilbert, and Ostrowski fractional differentiation inequalities. Results for the above are derived using three different types of fractional derivatives, namely by Canavati, Riemann-Liouville and Caputo. The univariate and multivariate cases are both examined. Each chapter is self-contained. The theory is presented systematically along with the applications. The application to information theory is also examined. This monograph is suitable for researchers and graduate students in pure mathematics. Applied mathematicians, engineers, and other applied scientists will also find this book useful.