Basic Modern Algebra with Applications

Basic Modern Algebra with Applications PDF Author: Mahima Ranjan Adhikari
Publisher: Springer Science & Business Media
ISBN: 8132215990
Category : Mathematics
Languages : en
Pages : 650

Get Book Here

Book Description
The book is primarily intended as a textbook on modern algebra for undergraduate mathematics students. It is also useful for those who are interested in supplementary reading at a higher level. The text is designed in such a way that it encourages independent thinking and motivates students towards further study. The book covers all major topics in group, ring, vector space and module theory that are usually contained in a standard modern algebra text. In addition, it studies semigroup, group action, Hopf's group, topological groups and Lie groups with their actions, applications of ring theory to algebraic geometry, and defines Zariski topology, as well as applications of module theory to structure theory of rings and homological algebra. Algebraic aspects of classical number theory and algebraic number theory are also discussed with an eye to developing modern cryptography. Topics on applications to algebraic topology, category theory, algebraic geometry, algebraic number theory, cryptography and theoretical computer science interlink the subject with different areas. Each chapter discusses individual topics, starting from the basics, with the help of illustrative examples. This comprehensive text with a broad variety of concepts, applications, examples, exercises and historical notes represents a valuable and unique resource.

Basic Modern Algebra with Applications

Basic Modern Algebra with Applications PDF Author: Mahima Ranjan Adhikari
Publisher: Springer Science & Business Media
ISBN: 8132215990
Category : Mathematics
Languages : en
Pages : 650

Get Book Here

Book Description
The book is primarily intended as a textbook on modern algebra for undergraduate mathematics students. It is also useful for those who are interested in supplementary reading at a higher level. The text is designed in such a way that it encourages independent thinking and motivates students towards further study. The book covers all major topics in group, ring, vector space and module theory that are usually contained in a standard modern algebra text. In addition, it studies semigroup, group action, Hopf's group, topological groups and Lie groups with their actions, applications of ring theory to algebraic geometry, and defines Zariski topology, as well as applications of module theory to structure theory of rings and homological algebra. Algebraic aspects of classical number theory and algebraic number theory are also discussed with an eye to developing modern cryptography. Topics on applications to algebraic topology, category theory, algebraic geometry, algebraic number theory, cryptography and theoretical computer science interlink the subject with different areas. Each chapter discusses individual topics, starting from the basics, with the help of illustrative examples. This comprehensive text with a broad variety of concepts, applications, examples, exercises and historical notes represents a valuable and unique resource.

MODERN ALGEBRA WITH APPLICATIONS

MODERN ALGEBRA WITH APPLICATIONS PDF Author: William J Gilbert
Publisher: John Wiley & Sons
ISBN: 9788126518302
Category :
Languages : en
Pages : 366

Get Book Here

Book Description
Market_Desc: Upper undergraduate and graduate level modern algebra courses Special Features: · Includes applications so students can see right away how to use the theory· This classic text has sold almost 12,000 units· Contains numerous examples· Includes chapters on Boolean Algebras, groups, quotient groups, symmetry groups in three dimensions, Polya-Burnside method of enumeration, monoids and machines, rings and fields, polynomial and Euclidean rings, quotient rings, field extensions, Latin squares, geometrical constructions, and error-correcting codes· Andwers to odd-numbered exercises so students can check their work About The Book: The book covers all the group, ring, and field theory that is usually contained in a standard modern algebra course; the exact sections containing this material are indicated in the Table of Contents. It stops short of the Sylow theorems and Galois theory. These topics could only be touched on in a first course, and the author feels that more time should be spent on them if they are to be appreciated.

Introduction to Modern Algebra and Its Applications

Introduction to Modern Algebra and Its Applications PDF Author: Nadiya Gubareni
Publisher: CRC Press
ISBN: 1000209539
Category : Mathematics
Languages : en
Pages : 363

Get Book Here

Book Description
The book provides an introduction to modern abstract algebra and its applications. It covers all major topics of classical theory of numbers, groups, rings, fields and finite dimensional algebras. The book also provides interesting and important modern applications in such subjects as Cryptography, Coding Theory, Computer Science and Physics. In particular, it considers algorithm RSA, secret sharing algorithms, Diffie-Hellman Scheme and ElGamal cryptosystem based on discrete logarithm problem. It also presents Buchberger’s algorithm which is one of the important algorithms for constructing Gröbner basis. Key Features: Covers all major topics of classical theory of modern abstract algebra such as groups, rings and fields and their applications. In addition it provides the introduction to the number theory, theory of finite fields, finite dimensional algebras and their applications. Provides interesting and important modern applications in such subjects as Cryptography, Coding Theory, Computer Science and Physics. Presents numerous examples illustrating the theory and applications. It is also filled with a number of exercises of various difficulty. Describes in detail the construction of the Cayley-Dickson construction for finite dimensional algebras, in particular, algebras of quaternions and octonions and gives their applications in the number theory and computer graphics.

Abstract Algebra

Abstract Algebra PDF Author: Thomas Judson
Publisher: Orthogonal Publishing L3c
ISBN: 9781944325190
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.

A Book of Abstract Algebra

A Book of Abstract Algebra PDF Author: Charles C Pinter
Publisher: Courier Corporation
ISBN: 0486474178
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.

A Course in Algebra

A Course in Algebra PDF Author: Ėrnest Borisovich Vinberg
Publisher: American Mathematical Soc.
ISBN: 0821833189
Category : Mathematics
Languages : en
Pages : 526

Get Book Here

Book Description
Great book! The author's teaching experinece shows in every chapter. --Efim Zelmanov, University of California, San Diego Vinberg has written an algebra book that is excellent, both as a classroom text or for self-study. It is plain that years of teaching abstract algebra have enabled him to say the right thing at the right time. --Irving Kaplansky, MSRI This is a comprehensive text on modern algebra written for advanced undergraduate and basic graduate algebra classes. The book is based on courses taught by the author at the Mechanics and Mathematics Department of Moscow State University and at the Mathematical College of the Independent University of Moscow. The unique feature of the book is that it contains almost no technically difficult proofs. Following his point of view on mathematics, the author tried, whenever possible, to replace calculations and difficult deductions with conceptual proofs and to associate geometric images to algebraic objects. Another important feature is that the book presents most of the topics on several levels, allowing the student to move smoothly from initial acquaintance to thorough study and deeper understanding of the subject. Presented are basic topics in algebra such as algebraic structures, linear algebra, polynomials, groups, as well as more advanced topics like affine and projective spaces, tensor algebra, Galois theory, Lie groups, associative algebras and their representations. Some applications of linear algebra and group theory to physics are discussed. Written with extreme care and supplied with more than 200 exercises and 70 figures, the book is also an excellent text for independent study.

Basic Algebra

Basic Algebra PDF Author: Anthony W. Knapp
Publisher: Springer Science & Business Media
ISBN: 0817645292
Category : Mathematics
Languages : en
Pages : 762

Get Book Here

Book Description
Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Together, the two books give the reader a global view of algebra and its role in mathematics as a whole. The presentation includes blocks of problems that introduce additional topics and applications to science and engineering to guide further study. Many examples and hundreds of problems are included, along with a separate 90-page section giving hints or complete solutions for most of the problems.

Basic Topology 2

Basic Topology 2 PDF Author: Avishek Adhikari
Publisher: Springer Nature
ISBN: 981166577X
Category : Mathematics
Languages : en
Pages : 385

Get Book Here

Book Description
This second of the three-volume book is targeted as a basic course in topology for undergraduate and graduate students of mathematics. It focuses on many variants of topology and its applications in modern analysis, geometry, algebra, and the theory of numbers. Offering a proper background on topology, analysis, and algebra, this volume discusses the topological groups and topological vector spaces that provide many interesting geometrical objects which relate algebra with geometry and analysis. This volume follows a systematic and comprehensive elementary approach to the topology related to manifolds, emphasizing differential topology. It further communicates the history of the emergence of the concepts leading to the development of topological groups, manifolds, and also Lie groups as mathematical topics with their motivations. This book will promote the scope, power, and active learning of the subject while covering a wide range of theories and applications in a balanced unified way.

Basic Topology 3

Basic Topology 3 PDF Author: Mahima Ranjan Adhikari
Publisher: Springer Nature
ISBN: 9811665508
Category : Mathematics
Languages : en
Pages : 488

Get Book Here

Book Description
This third of the three-volume book is targeted as a basic course in algebraic topology and topology for fiber bundles for undergraduate and graduate students of mathematics. It focuses on many variants of topology and its applications in modern analysis, geometry, and algebra. Topics covered in this volume include homotopy theory, homology and cohomology theories, homotopy theory of fiber bundles, Euler characteristic, and the Betti number. It also includes certain classic problems such as the Jordan curve theorem along with the discussions on higher homotopy groups and establishes links between homotopy and homology theories, axiomatic approach to homology and cohomology as inaugurated by Eilenberg and Steenrod. It includes more material than is comfortably covered by beginner students in a one-semester course. Students of advanced courses will also find the book useful. This book will promote the scope, power and active learning of the subject, all the while covering a wide range of theory and applications in a balanced unified way.

Basic Topology 1

Basic Topology 1 PDF Author: Avishek Adhikari
Publisher: Springer Nature
ISBN: 9811665095
Category : Mathematics
Languages : en
Pages : 523

Get Book Here

Book Description
This first of the three-volume book is targeted as a basic course in topology for undergraduate and graduate students of mathematics. It studies metric spaces and general topology. It starts with the concept of the metric which is an abstraction of distance in the Euclidean space. The special structure of a metric space induces a topology that leads to many applications of topology in modern analysis and modern algebra, as shown in this volume. This volume also studies topological properties such as compactness and connectedness. Considering the importance of compactness in mathematics, this study covers the Stone–Cech compactification and Alexandroff one-point compactification. This volume also includes the Urysohn lemma, Urysohn metrization theorem, Tietz extension theorem, and Gelfand–Kolmogoroff theorem. The content of this volume is spread into eight chapters of which the last chapter conveys the history of metric spaces and the history of the emergence of the concepts leading to the development of topology as a subject with their motivations with an emphasis on general topology. It includes more material than is comfortably covered by beginner students in a one-semester course. Students of advanced courses will also find the book useful. This book will promote the scope, power, and active learning of the subject, all the while covering a wide range of theories and applications in a balanced unified way.