Fundamental Concepts of Algebra

Fundamental Concepts of Algebra PDF Author: Bruce Elwyn Meserve
Publisher: Courier Corporation
ISBN: 9780486614700
Category : Mathematics
Languages : en
Pages : 324

Get Book Here

Book Description
Uncommonly interesting introduction illuminates complexities of higher mathematics while offering a thorough understanding of elementary mathematics. Covers development of complex number system and elementary theories of numbers, polynomials and operations, determinants, matrices, constructions and graphical representations. Several exercises — without solutions.

Fundamental Concepts of Algebra

Fundamental Concepts of Algebra PDF Author: Bruce Elwyn Meserve
Publisher: Courier Corporation
ISBN: 9780486614700
Category : Mathematics
Languages : en
Pages : 324

Get Book Here

Book Description
Uncommonly interesting introduction illuminates complexities of higher mathematics while offering a thorough understanding of elementary mathematics. Covers development of complex number system and elementary theories of numbers, polynomials and operations, determinants, matrices, constructions and graphical representations. Several exercises — without solutions.

Basic Concepts of Algebra

Basic Concepts of Algebra PDF Author: Claude Simpson
Publisher:
ISBN: 9781705347959
Category :
Languages : en
Pages : 187

Get Book Here

Book Description
Book DescriptionBasic Concepts of Algebra is an excellent refresher for algebra. It is also an indispensable reference book re-definitions, theory and steps in solving algebraic problems. It covers a wide range of the necessary concepts and content that will help the learner to develop a good background so as to waltz through algebra. The book has twelve chapters: Numbers; Algebraic Expressions; Indices 1, Roots and Radicals; Indices 2; Equations 1; Equations 2; Inequalities; Factorization; Quadratic Equations; Graphing; Solving Systems of Linear Equations and Logarithms. The goal of this book is to give the learner the necessary and required concepts, skills and knowledge so as to be successful in algebra. It is the author's view that a good grasp of the basic concepts of algebra will enable and encourage competence in statistics, geometry, trigonometry and calculus. The learner is therefore encouraged to go through each topic in this book meticulously and remember to practice questions from the exercises. The concepts are set out in a clear format with definitions, examples and exercises. To make sure that you understand the material, each chapter ends with a summary exercise. You should get the most from this book if you work steadily from the beginning to the end in each chapter. Each chapter has the relevant topics and sub-topics with definitions and examples that will allow the learner to easily workout the problems in the exercises.This book is suitable for high school and first year college students. It may be introduced at the upper elementary level and be used right up to adult education. The book is good for those persons who are a bit rusty in algebra or have forgotten content materials because it has been awhile since they have taken an algebra course. If such is the case then this is the perfect book for you to refresh your skills and sharpen your proficiency in core concepts of algebra.Finally I would like to reiterate that algebra can be fun but the learner has to first get a good grasp of the basic concepts so as to have a rewarding experience which will not only advance competency level in algebra but will be favorable for further studies in mathematics. Remember to make a firm commitment to spend the time to study and practice your algebra.

Basic Notions of Algebra

Basic Notions of Algebra PDF Author: Igor R. Shafarevich
Publisher: Springer Science & Business Media
ISBN: 9783540251774
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
Wholeheartedly recommended to every student and user of mathematics, this is an extremely original and highly informative essay on algebra and its place in modern mathematics and science. From the fields studied in every university maths course, through Lie groups to cohomology and category theory, the author shows how the origins of each concept can be related to attempts to model phenomena in physics or in other branches of mathematics. Required reading for mathematicians, from beginners to experts.

Basic Algebra

Basic Algebra PDF Author: Anthony W. Knapp
Publisher: Springer Science & Business Media
ISBN: 0817645292
Category : Mathematics
Languages : en
Pages : 762

Get Book Here

Book Description
Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Together, the two books give the reader a global view of algebra and its role in mathematics as a whole. The presentation includes blocks of problems that introduce additional topics and applications to science and engineering to guide further study. Many examples and hundreds of problems are included, along with a separate 90-page section giving hints or complete solutions for most of the problems.

Fundamental Concepts of Abstract Algebra

Fundamental Concepts of Abstract Algebra PDF Author: Gertrude Ehrlich
Publisher: Courier Corporation
ISBN: 0486291863
Category : Mathematics
Languages : en
Pages : 354

Get Book Here

Book Description
This undergraduate text presents extensive coverage of set theory, groups, rings, modules, vector spaces, and fields. It offers numerous examples, definitions, theorems, proofs, and practice exercises. 1991 edition.

Fundamental Concepts of Algebra

Fundamental Concepts of Algebra PDF Author:
Publisher: Academic Press
ISBN: 0080873154
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
Fundamental Concepts of Algebra

The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra PDF Author: Benjamin Fine
Publisher: Springer Science & Business Media
ISBN: 1461219280
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
The fundamental theorem of algebra states that any complex polynomial must have a complex root. This book examines three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. The first proof in each pair is fairly straightforward and depends only on what could be considered elementary mathematics. However, each of these first proofs leads to more general results from which the fundamental theorem can be deduced as a direct consequence. These general results constitute the second proof in each pair. To arrive at each of the proofs, enough of the general theory of each relevant area is developed to understand the proof. In addition to the proofs and techniques themselves, many applications such as the insolvability of the quintic and the transcendence of e and pi are presented. Finally, a series of appendices give six additional proofs including a version of Gauss'original first proof. The book is intended for junior/senior level undergraduate mathematics students or first year graduate students, and would make an ideal "capstone" course in mathematics.

Algebra I

Algebra I PDF Author: Aleksej I. Kostrikin
Publisher: Springer
ISBN: 3662396432
Category : Mathematics
Languages : en
Pages : 265

Get Book Here

Book Description


Jousting Armadillos: An Introduction to Algebra - Student Text and Workbook

Jousting Armadillos: An Introduction to Algebra - Student Text and Workbook PDF Author: Linus Christian Rollman
Publisher: Arbor Center for Teaching
ISBN: 0982136315
Category : Juvenile Nonfiction
Languages : en
Pages : 185

Get Book Here

Book Description
First in the Arbor Algebra series. A writing-based, common sense, whimsical & engaging introduction to algebra for middle-grade math students.

Advanced Algebra

Advanced Algebra PDF Author: Anthony W. Knapp
Publisher: Springer Science & Business Media
ISBN: 0817646132
Category : Mathematics
Languages : en
Pages : 757

Get Book Here

Book Description
Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Advanced Algebra includes chapters on modern algebra which treat various topics in commutative and noncommutative algebra and provide introductions to the theory of associative algebras, homological algebras, algebraic number theory, and algebraic geometry. Many examples and hundreds of problems are included, along with hints or complete solutions for most of the problems. Together the two books give the reader a global view of algebra and its role in mathematics as a whole.