Basic Analysis III

Basic Analysis III PDF Author: James K. Peterson
Publisher: CRC Press
ISBN: 1351679309
Category : Mathematics
Languages : en
Pages : 469

Get Book Here

Book Description
Basic Analysis III: Mappings on Infinite Dimensional Spaces is intended as a first course in abstract linear analysis. This textbook cover metric spaces, normed linear spaces and inner product spaces, along with many other deeper abstract ideas such a completeness, operators and dual spaces. These topics act as an important tool in the development of a mathematically trained scientist. Feature: Can be used as a traditional textbook as well as for self-study Suitable for undergraduates in mathematics and associated disciplines Emphasizes learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions

Basic Analysis III

Basic Analysis III PDF Author: James K. Peterson
Publisher: CRC Press
ISBN: 1351679309
Category : Mathematics
Languages : en
Pages : 469

Get Book Here

Book Description
Basic Analysis III: Mappings on Infinite Dimensional Spaces is intended as a first course in abstract linear analysis. This textbook cover metric spaces, normed linear spaces and inner product spaces, along with many other deeper abstract ideas such a completeness, operators and dual spaces. These topics act as an important tool in the development of a mathematically trained scientist. Feature: Can be used as a traditional textbook as well as for self-study Suitable for undergraduates in mathematics and associated disciplines Emphasizes learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions

Basic Analysis I

Basic Analysis I PDF Author: Jiri Lebl
Publisher: Createspace Independent Publishing Platform
ISBN: 9781718862401
Category :
Languages : en
Pages : 282

Get Book Here

Book Description
Version 5.0. A first course in rigorous mathematical analysis. Covers the real number system, sequences and series, continuous functions, the derivative, the Riemann integral, sequences of functions, and metric spaces. Originally developed to teach Math 444 at University of Illinois at Urbana-Champaign and later enhanced for Math 521 at University of Wisconsin-Madison and Math 4143 at Oklahoma State University. The first volume is either a stand-alone one-semester course or the first semester of a year-long course together with the second volume. It can be used anywhere from a semester early introduction to analysis for undergraduates (especially chapters 1-5) to a year-long course for advanced undergraduates and masters-level students. See http://www.jirka.org/ra/ Table of Contents (of this volume I): Introduction 1. Real Numbers 2. Sequences and Series 3. Continuous Functions 4. The Derivative 5. The Riemann Integral 6. Sequences of Functions 7. Metric Spaces This first volume contains what used to be the entire book "Basic Analysis" before edition 5, that is chapters 1-7. Second volume contains chapters on multidimensional differential and integral calculus and further topics on approximation of functions.

Basic Analysis II

Basic Analysis II PDF Author: Jiri Lebl
Publisher: Createspace Independent Publishing Platform
ISBN: 9781718865488
Category :
Languages : en
Pages : 196

Get Book Here

Book Description
Version 2.0. The second volume of Basic Analysis, a first course in mathematical analysis. This volume is the second semester material for a year-long sequence for advanced undergraduates or masters level students. This volume started with notes for Math 522 at University of Wisconsin-Madison, and then was heavily revised and modified for teaching Math 4153/5053 at Oklahoma State University. It covers differential calculus in several variables, line integrals, multivariable Riemann integral including a basic case of Green's Theorem, and topics on power series, Arzelà-Ascoli, Stone-Weierstrass, and Fourier Series. See http://www.jirka.org/ra/ Table of Contents (of this volume II): 8. Several Variables and Partial Derivatives 9. One Dimensional Integrals in Several Variables 10. Multivariable Integral 11. Functions as Limits

Basic Analysis II

Basic Analysis II PDF Author: James K. Peterson
Publisher: CRC Press
ISBN: 1351679333
Category : Mathematics
Languages : en
Pages : 530

Get Book Here

Book Description
Basic Analysis II: A Modern Calculus in Many Variables focuses on differentiation in Rn and important concepts about mappings from Rn to Rm, such as the inverse and implicit function theorem and change of variable formulae for multidimensional integration. These topics converge nicely with many other important applied and theoretical areas which are no longer covered in mathematical science curricula. Although it follows on from the preceding volume, this is a self-contained book, accessible to undergraduates with a minimal grounding in analysis. Features Can be used as a traditional textbook as well as for self-study Suitable for undergraduates in mathematics and associated disciplines Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions

Basic Analysis I

Basic Analysis I PDF Author: James K. Peterson
Publisher: CRC Press
ISBN: 1351679457
Category : Mathematics
Languages : en
Pages : 595

Get Book Here

Book Description
Basic Analysis I: Functions of a Real Variable is designed for students who have completed the usual calculus and ordinary differential equation sequence and a basic course in linear algebra. This is a critical course in the use of abstraction, but is just first volume in a sequence of courses which prepare students to become practicing scientists. This book is written with the aim of balancing the theory and abstraction with clear explanations and arguments, so that students who are from a variety of different areas can follow this text and use it profitably for self-study. It can also be used as a supplementary text for anyone whose work requires that they begin to assimilate more abstract mathematical concepts as part of their professional growth. Features Can be used as a traditional textbook as well as for self-study Suitable for undergraduate mathematics students, or for those in other disciplines requiring a solid grounding in abstraction Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions

Analysis I

Analysis I PDF Author: Herbert Amann
Publisher: Springer Science & Business Media
ISBN: 3764373237
Category : Mathematics
Languages : en
Pages : 436

Get Book Here

Book Description
"This textbook provides an outstanding introduction to analysis. It is distinguished by its high level of presentation and its focus on the essential.'' (Zeitschrift für Analysis und ihre Anwendung 18, No. 4 - G. Berger, review of the first German edition) "One advantage of this presentation is that the power of the abstract concepts are convincingly demonstrated using concrete applications.'' (W. Grölz, review of the first German edition)

Basic Real Analysis

Basic Real Analysis PDF Author: Houshang H. Sohrab
Publisher: Springer
ISBN: 1493918419
Category : Mathematics
Languages : en
Pages : 687

Get Book Here

Book Description
This expanded second edition presents the fundamentals and touchstone results of real analysis in full rigor, but in a style that requires little prior familiarity with proofs or mathematical language. The text is a comprehensive and largely self-contained introduction to the theory of real-valued functions of a real variable. The chapters on Lebesgue measure and integral have been rewritten entirely and greatly improved. They now contain Lebesgue’s differentiation theorem as well as his versions of the Fundamental Theorem(s) of Calculus. With expanded chapters, additional problems, and an expansive solutions manual, Basic Real Analysis, Second Edition is ideal for senior undergraduates and first-year graduate students, both as a classroom text and a self-study guide. Reviews of first edition: The book is a clear and well-structured introduction to real analysis aimed at senior undergraduate and beginning graduate students. The prerequisites are few, but a certain mathematical sophistication is required. ... The text contains carefully worked out examples which contribute motivating and helping to understand the theory. There is also an excellent selection of exercises within the text and problem sections at the end of each chapter. In fact, this textbook can serve as a source of examples and exercises in real analysis. —Zentralblatt MATH The quality of the exposition is good: strong and complete versions of theorems are preferred, and the material is organised so that all the proofs are of easily manageable length; motivational comments are helpful, and there are plenty of illustrative examples. The reader is strongly encouraged to learn by doing: exercises are sprinkled liberally throughout the text and each chapter ends with a set of problems, about 650 in all, some of which are of considerable intrinsic interest. —Mathematical Reviews [This text] introduces upper-division undergraduate or first-year graduate students to real analysis.... Problems and exercises abound; an appendix constructs the reals as the Cauchy (sequential) completion of the rationals; references are copious and judiciously chosen; and a detailed index brings up the rear. —CHOICE Reviews

Basic Analysis V

Basic Analysis V PDF Author: James K. Peterson
Publisher: CRC Press
ISBN: 1351679155
Category : Mathematics
Languages : en
Pages : 586

Get Book Here

Book Description
Basic Analysis V: Functional Analysis and Topology introduces graduate students in science to concepts from topology and functional analysis, both linear and nonlinear. It is the fifth book in a series designed to train interested readers how to think properly using mathematical abstractions, and how to use the tools of mathematical analysis in applications. It is important to realize that the most difficult part of applying mathematical reasoning to a new problem domain is choosing the underlying mathematical framework to use on the problem. Once that choice is made, we have many tools we can use to solve the problem. However, a different choice would open up avenues of analysis from a different, perhaps more productive, perspective. In this volume, the nature of these critical choices is discussed using applications involving the immune system and cognition. Features Develops a proof of the Jordan Canonical form to show some basic ideas in algebraic topology Provides a thorough treatment of topological spaces, finishing with the Krein–Milman theorem Discusses topological degree theory (Brouwer, Leray–Schauder, and Coincidence) Carefully develops manifolds and functions on manifolds ending with Riemannian metrics Suitable for advanced students in mathematics and associated disciplines Can be used as a traditional textbook as well as for self-study Author James K. Peterson is an Emeritus Professor at the School of Mathematical and Statistical Sciences, Clemson University. He tries hard to build interesting models of complex phenomena using a blend of mathematics, computation, and science. To this end, he has written four books on how to teach such things to biologists and cognitive scientists. These books grew out of his Calculus for Biologists courses offered to the biology majors from 2007 to 2015. He has taught the analysis courses since he started teaching both at Clemson and at his previous post at Michigan Technological University. In between, he spent time as a senior engineer in various aerospace firms and even did a short stint in a software development company. The problems he was exposed to were very hard, and not amenable to solution using just one approach. Using tools from many branches of mathematics, from many types of computational languages, and from first-principles analysis of natural phenomena was absolutely essential to make progress. In both mathematical and applied areas, students often need to use advanced mathematics tools they have not learned properly. So, he has recently written a series of five books on mathematical analysis to help researchers with the problem of learning new things after they have earned their degrees and are practicing scientists. Along the way, he has also written papers in immunology, cognitive science, and neural network technology, in addition to having grants from the NSF, NASA, and the US Army. He also likes to paint, build furniture, and write stories.

Basic Analysis

Basic Analysis PDF Author: JAMES K. PETERSON
Publisher: CRC Press
ISBN: 9781138055148
Category :
Languages : en
Pages : 2688

Get Book Here

Book Description
Basic Analysis: Volumes I-V is written with the aim of balancing theory and abstraction with clear explanations and arguments, so that students and researchers alike who are from a variety of different areas can follow this text and use it profitably for self-study. The first volume is designed for students who have completed the usual calculus and ordinary differential equation sequence and a basic course in linear algebra. This is a critical course in the use of abstraction, but is just first volume in a sequence of courses which prepare students to become practicing scientists. The second volume focuses on differentiation in n-dimensions and important concepts about mappings between finite dimensional Euclidean spaces, such as the inverse and implicit function theorem and change of variable formulae for multidimensional integration. These important topics provide background in important applied and theoretical areas which are no longer covered in mathematical science curricula. Although it follows on from the preceding volume, this is a self-contained book, accessible to undergraduates with a standard course in undergraduate analysis. The third volume is intended as a first course in abstract linear analysis. This textbook covers metric spaces, normed linear spaces and inner product spaces, along with many other deeper abstract ideas such a completeness, operators and dual spaces. These topics act as an important tool in the development of a mathematically trained scientist. The fourth volume introduces students to concepts from measure theory and continues their training in the abstract way of looking at the world. This is a most important skill to have when your life's work will involve quantitative modeling to gain insight into the real world. This text generalizes the notion of integration to a very abstract setting in a variety of ways. We generalize the notion of the length of an interval to the measure of a set and learn how to construct the usual ideas from integration using measures. We discuss carefully the many notions of convergence that measure theory provides. The final volume introduces graduate students in science with concepts from topology and functional analysis, both linear and nonlinear. It is the fifth book in a series designed to train interested readers how to think properly using mathematical abstractions, and how to use the tools of mathematical analysis in applications. It is important to realize that the most difficult part of applying mathematical reasoning to a new problem domain is choosing the underlying mathematical framework to use on the problem. Once that choice is made, we have many tools we can use to solve the problem. However, a different choice would open up avenues of analysis from a different, perhaps more productive perspective. In this volume, the nature of these critical choices is discussed using applications involving the immune system and cognition. Features: Can be used as a supplementary text for anyone whose work requires that they begin to assimilate more abstract mathematical concepts as part of their professional growth Function as a traditional textbook as well as a resource for self-study Suitable for mathematics students and for those in other disciplines such as biology, physics, and economics and others requiring a careful and solid grounding in the use of abstraction in problem solving Emphasizes learning how to understand the consequences of the underlying assumptions used in building a model Regularly uses computation tools to help understand abstract concepts.

Analysis I

Analysis I PDF Author: Terence Tao
Publisher: Springer
ISBN: 9811017891
Category : Mathematics
Languages : en
Pages : 366

Get Book Here

Book Description
This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.