Banach Algebra Techniques in Operator Theory

Banach Algebra Techniques in Operator Theory PDF Author:
Publisher: Academic Press
ISBN: 0080873642
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
Banach Algebra Techniques in Operator Theory

Banach Algebra Techniques in Operator Theory

Banach Algebra Techniques in Operator Theory PDF Author:
Publisher: Academic Press
ISBN: 0080873642
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
Banach Algebra Techniques in Operator Theory

Banach Algebra Techniques in the Theory of Toeplitz Operators

Banach Algebra Techniques in the Theory of Toeplitz Operators PDF Author: Ronald G. Douglas
Publisher: American Mathematical Soc.
ISBN: 9780821888643
Category : Mathematics
Languages : en
Pages : 66

Get Book Here

Book Description


Banach Algebra Techniques in Operator Theory

Banach Algebra Techniques in Operator Theory PDF Author: Ronald G. Douglas
Publisher: Springer Science & Business Media
ISBN: 1461216567
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
A discussion of certain advanced topics in operator theory, providing the necessary background while assuming only standard senior-first year graduate courses in general topology, measure theory, and algebra. Each chapter ends with source notes which suggest additional reading along with comments on who proved what and when, followed by a large number of problems of varying difficulty. This new edition will appeal to a whole new generation of students seeking an introduction to this topic.

Banach algebra techniques in operator theory

Banach algebra techniques in operator theory PDF Author: R. G. Douglas
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


C*-Algebras and Operator Theory

C*-Algebras and Operator Theory PDF Author: Gerald J. Murphy
Publisher: Academic Press
ISBN: 0080924964
Category : Mathematics
Languages : en
Pages : 297

Get Book Here

Book Description
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.

An Introduction to Operator Algebras

An Introduction to Operator Algebras PDF Author: Kehe Zhu
Publisher: CRC Press
ISBN: 9780849378751
Category : Mathematics
Languages : en
Pages : 172

Get Book Here

Book Description
An Introduction to Operator Algebras is a concise text/reference that focuses on the fundamental results in operator algebras. Results discussed include Gelfand's representation of commutative C*-algebras, the GNS construction, the spectral theorem, polar decomposition, von Neumann's double commutant theorem, Kaplansky's density theorem, the (continuous, Borel, and L8) functional calculus for normal operators, and type decomposition for von Neumann algebras. Exercises are provided after each chapter.

Operator Algebras and Their Modules

Operator Algebras and Their Modules PDF Author: David P. Blecher
Publisher: Oxford University Press
ISBN: 0191523569
Category : Mathematics
Languages : en
Pages :

Get Book Here

Book Description
This invaluable reference is the first to present the general theory of algebras of operators on a Hilbert space, and the modules over such algebras. The new theory of operator spaces is presented early on and the text assembles the basic concepts, theory and methodologies needed to equip a beginning researcher in this area. A major trend in modern mathematics, inspired largely by physics, is toward `noncommutative' or `quantized' phenomena. In functional analysis, this has appeared notably under the name of `operator spaces', which is a variant of Banach spaces which is particularly appropriate for solving problems concerning spaces or algebras of operators on Hilbert space arising in 'noncommutative mathematics'. The category of operator spaces includes operator algebras, selfadjoint (that is, C*-algebras) or otherwise. Also, most of the important modules over operator algebras are operator spaces. A common treatment of the subjects of C*-algebras, nonselfadjoint operator algebras, and modules over such algebras (such as Hilbert C*-modules), together under the umbrella of operator space theory, is the main topic of the book. A general theory of operator algebras, and their modules, naturally develops out of the operator space methodology. Indeed, operator space theory is a sensitive enough medium to reflect accurately many important noncommutative phenomena. Using recent advances in the field, the book shows how the underlying operator space structure captures, very precisely, the profound relations between the algebraic and the functional analytic structures involved. The rich interplay between spectral theory, operator theory, C*-algebra and von Neumann algebra techniques, and the influx of important ideas from related disciplines, such as pure algebra, Banach space theory, Banach algebras, and abstract function theory is highlighted. Each chapter ends with a lengthy section of notes containing a wealth of additional information.

Non-commutative Gelfand Theories

Non-commutative Gelfand Theories PDF Author: Steffen Roch
Publisher: Springer Science & Business Media
ISBN: 0857291831
Category : Mathematics
Languages : en
Pages : 388

Get Book Here

Book Description
Written as a hybrid between a research monograph and a textbook the first half of this book is concerned with basic concepts for the study of Banach algebras that, in a sense, are not too far from being commutative. Essentially, the algebra under consideration either has a sufficiently large center or is subject to a higher order commutator property (an algebra with a so-called polynomial identity or in short: Pl-algebra). In the second half of the book, a number of selected examples are used to demonstrate how this theory can be successfully applied to problems in operator theory and numerical analysis. Distinguished by the consequent use of local principles (non-commutative Gelfand theories), PI-algebras, Mellin techniques and limit operator techniques, each one of the applications presented in chapters 4, 5 and 6 forms a theory that is up to modern standards and interesting in its own right. Written in a way that can be worked through by the reader with fundamental knowledge of analysis, functional analysis and algebra, this book will be accessible to 4th year students of mathematics or physics whilst also being of interest to researchers in the areas of operator theory, numerical analysis, and the general theory of Banach algebras.

Fundamentals of the Theory of Operator Algebras. Volume III

Fundamentals of the Theory of Operator Algebras. Volume III PDF Author: Richard V. Kadison
Publisher: American Mathematical Soc.
ISBN: 0821894692
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
This volume is the companion volume to Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory (Graduate Studies in Mathematics series, Volume 15). The goal of the text proper is to teach the subject and lead readers to where the vast literature--in the subject specifically and in its many applications--becomes accessible. The choice of material was made from among the fundamentals of what may be called the "classical" theory of operator algebras. This volume contains the written solutions to the exercises in the Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory.

Introduction to Large Truncated Toeplitz Matrices

Introduction to Large Truncated Toeplitz Matrices PDF Author: Albrecht Böttcher
Publisher: Springer Science & Business Media
ISBN: 1461214262
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
Applying functional analysis and operator theory to some concrete asymptotic problems of linear algebra, this book contains results on the stability of projection methods, deals with asymptotic inverses and Moore-Penrose inversion of large Toeplitz matrices, and embarks on the asymptotic behaviour of the norms of inverses, the pseudospectra, the singular values, and the eigenvalues of large Toeplitz matrices. The approach is heavily based on Banach algebra techniques and nicely demonstrates the usefulness of C*-algebras and local principles in numerical analysis, including classical topics as well as results and methods from the last few years. Though employing modern tools, the exposition is elementary and points out the mathematical background behind some interesting phenomena encountered with large Toeplitz matrices. Accessible to readers with basic knowledge in functional analysis, the book addresses graduates, teachers, and researchers and should be of interest to everyone who has to deal with infinite matrices (Toeplitz or not) and their large truncations.