Author: Richard Nuckolls
Publisher: Simon and Schuster
ISBN: 1638350140
Category : Computers
Languages : en
Pages : 446
Book Description
The Microsoft Azure cloud is an ideal platform for data-intensive applications. Designed for productivity, Azure provides pre-built services that make collection, storage, and analysis much easier to implement and manage. Azure Storage, Streaming, and Batch Analytics teaches you how to design a reliable, performant, and cost-effective data infrastructure in Azure by progressively building a complete working analytics system. Summary The Microsoft Azure cloud is an ideal platform for data-intensive applications. Designed for productivity, Azure provides pre-built services that make collection, storage, and analysis much easier to implement and manage. Azure Storage, Streaming, and Batch Analytics teaches you how to design a reliable, performant, and cost-effective data infrastructure in Azure by progressively building a complete working analytics system. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Microsoft Azure provides dozens of services that simplify storing and processing data. These services are secure, reliable, scalable, and cost efficient. About the book Azure Storage, Streaming, and Batch Analytics shows you how to build state-of-the-art data solutions with tools from the Microsoft Azure platform. Read along to construct a cloud-native data warehouse, adding features like real-time data processing. Based on the Lambda architecture for big data, the design uses scalable services such as Event Hubs, Stream Analytics, and SQL databases. Along the way, you’ll cover most of the topics needed to earn an Azure data engineering certification. What's inside Configuring Azure services for speed and cost Constructing data pipelines with Data Factory Choosing the right data storage methods About the reader For readers familiar with database management. Examples in C# and PowerShell. About the author Richard Nuckolls is a senior developer building big data analytics and reporting systems in Azure. Table of Contents 1 What is data engineering? 2 Building an analytics system in Azure 3 General storage with Azure Storage accounts 4 Azure Data Lake Storage 5 Message handling with Event Hubs 6 Real-time queries with Azure Stream Analytics 7 Batch queries with Azure Data Lake Analytics 8 U-SQL for complex analytics 9 Integrating with Azure Data Lake Analytics 10 Service integration with Azure Data Factory 11 Managed SQL with Azure SQL Database 12 Integrating Data Factory with SQL Database 13 Where to go next
Azure Storage, Streaming, and Batch Analytics
Author: Richard Nuckolls
Publisher: Simon and Schuster
ISBN: 1638350140
Category : Computers
Languages : en
Pages : 446
Book Description
The Microsoft Azure cloud is an ideal platform for data-intensive applications. Designed for productivity, Azure provides pre-built services that make collection, storage, and analysis much easier to implement and manage. Azure Storage, Streaming, and Batch Analytics teaches you how to design a reliable, performant, and cost-effective data infrastructure in Azure by progressively building a complete working analytics system. Summary The Microsoft Azure cloud is an ideal platform for data-intensive applications. Designed for productivity, Azure provides pre-built services that make collection, storage, and analysis much easier to implement and manage. Azure Storage, Streaming, and Batch Analytics teaches you how to design a reliable, performant, and cost-effective data infrastructure in Azure by progressively building a complete working analytics system. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Microsoft Azure provides dozens of services that simplify storing and processing data. These services are secure, reliable, scalable, and cost efficient. About the book Azure Storage, Streaming, and Batch Analytics shows you how to build state-of-the-art data solutions with tools from the Microsoft Azure platform. Read along to construct a cloud-native data warehouse, adding features like real-time data processing. Based on the Lambda architecture for big data, the design uses scalable services such as Event Hubs, Stream Analytics, and SQL databases. Along the way, you’ll cover most of the topics needed to earn an Azure data engineering certification. What's inside Configuring Azure services for speed and cost Constructing data pipelines with Data Factory Choosing the right data storage methods About the reader For readers familiar with database management. Examples in C# and PowerShell. About the author Richard Nuckolls is a senior developer building big data analytics and reporting systems in Azure. Table of Contents 1 What is data engineering? 2 Building an analytics system in Azure 3 General storage with Azure Storage accounts 4 Azure Data Lake Storage 5 Message handling with Event Hubs 6 Real-time queries with Azure Stream Analytics 7 Batch queries with Azure Data Lake Analytics 8 U-SQL for complex analytics 9 Integrating with Azure Data Lake Analytics 10 Service integration with Azure Data Factory 11 Managed SQL with Azure SQL Database 12 Integrating Data Factory with SQL Database 13 Where to go next
Publisher: Simon and Schuster
ISBN: 1638350140
Category : Computers
Languages : en
Pages : 446
Book Description
The Microsoft Azure cloud is an ideal platform for data-intensive applications. Designed for productivity, Azure provides pre-built services that make collection, storage, and analysis much easier to implement and manage. Azure Storage, Streaming, and Batch Analytics teaches you how to design a reliable, performant, and cost-effective data infrastructure in Azure by progressively building a complete working analytics system. Summary The Microsoft Azure cloud is an ideal platform for data-intensive applications. Designed for productivity, Azure provides pre-built services that make collection, storage, and analysis much easier to implement and manage. Azure Storage, Streaming, and Batch Analytics teaches you how to design a reliable, performant, and cost-effective data infrastructure in Azure by progressively building a complete working analytics system. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Microsoft Azure provides dozens of services that simplify storing and processing data. These services are secure, reliable, scalable, and cost efficient. About the book Azure Storage, Streaming, and Batch Analytics shows you how to build state-of-the-art data solutions with tools from the Microsoft Azure platform. Read along to construct a cloud-native data warehouse, adding features like real-time data processing. Based on the Lambda architecture for big data, the design uses scalable services such as Event Hubs, Stream Analytics, and SQL databases. Along the way, you’ll cover most of the topics needed to earn an Azure data engineering certification. What's inside Configuring Azure services for speed and cost Constructing data pipelines with Data Factory Choosing the right data storage methods About the reader For readers familiar with database management. Examples in C# and PowerShell. About the author Richard Nuckolls is a senior developer building big data analytics and reporting systems in Azure. Table of Contents 1 What is data engineering? 2 Building an analytics system in Azure 3 General storage with Azure Storage accounts 4 Azure Data Lake Storage 5 Message handling with Event Hubs 6 Real-time queries with Azure Stream Analytics 7 Batch queries with Azure Data Lake Analytics 8 U-SQL for complex analytics 9 Integrating with Azure Data Lake Analytics 10 Service integration with Azure Data Factory 11 Managed SQL with Azure SQL Database 12 Integrating Data Factory with SQL Database 13 Where to go next
Azure Storage, Streaming, and Batch Analytics
Author: Richard L. Nuckolls
Publisher: Manning
ISBN: 1617296309
Category : Computers
Languages : en
Pages : 446
Book Description
The Microsoft Azure cloud is an ideal platform for data-intensive applications. Designed for productivity, Azure provides pre-built services that make collection, storage, and analysis much easier to implement and manage. Azure Storage, Streaming, and Batch Analytics teaches you how to design a reliable, performant, and cost-effective data infrastructure in Azure by progressively building a complete working analytics system. Summary The Microsoft Azure cloud is an ideal platform for data-intensive applications. Designed for productivity, Azure provides pre-built services that make collection, storage, and analysis much easier to implement and manage. Azure Storage, Streaming, and Batch Analytics teaches you how to design a reliable, performant, and cost-effective data infrastructure in Azure by progressively building a complete working analytics system. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Microsoft Azure provides dozens of services that simplify storing and processing data. These services are secure, reliable, scalable, and cost efficient. About the book Azure Storage, Streaming, and Batch Analytics shows you how to build state-of-the-art data solutions with tools from the Microsoft Azure platform. Read along to construct a cloud-native data warehouse, adding features like real-time data processing. Based on the Lambda architecture for big data, the design uses scalable services such as Event Hubs, Stream Analytics, and SQL databases. Along the way, you’ll cover most of the topics needed to earn an Azure data engineering certification. What's inside Configuring Azure services for speed and cost Constructing data pipelines with Data Factory Choosing the right data storage methods About the reader For readers familiar with database management. Examples in C# and PowerShell. About the author Richard Nuckolls is a senior developer building big data analytics and reporting systems in Azure. Table of Contents 1 What is data engineering? 2 Building an analytics system in Azure 3 General storage with Azure Storage accounts 4 Azure Data Lake Storage 5 Message handling with Event Hubs 6 Real-time queries with Azure Stream Analytics 7 Batch queries with Azure Data Lake Analytics 8 U-SQL for complex analytics 9 Integrating with Azure Data Lake Analytics 10 Service integration with Azure Data Factory 11 Managed SQL with Azure SQL Database 12 Integrating Data Factory with SQL Database 13 Where to go next
Publisher: Manning
ISBN: 1617296309
Category : Computers
Languages : en
Pages : 446
Book Description
The Microsoft Azure cloud is an ideal platform for data-intensive applications. Designed for productivity, Azure provides pre-built services that make collection, storage, and analysis much easier to implement and manage. Azure Storage, Streaming, and Batch Analytics teaches you how to design a reliable, performant, and cost-effective data infrastructure in Azure by progressively building a complete working analytics system. Summary The Microsoft Azure cloud is an ideal platform for data-intensive applications. Designed for productivity, Azure provides pre-built services that make collection, storage, and analysis much easier to implement and manage. Azure Storage, Streaming, and Batch Analytics teaches you how to design a reliable, performant, and cost-effective data infrastructure in Azure by progressively building a complete working analytics system. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Microsoft Azure provides dozens of services that simplify storing and processing data. These services are secure, reliable, scalable, and cost efficient. About the book Azure Storage, Streaming, and Batch Analytics shows you how to build state-of-the-art data solutions with tools from the Microsoft Azure platform. Read along to construct a cloud-native data warehouse, adding features like real-time data processing. Based on the Lambda architecture for big data, the design uses scalable services such as Event Hubs, Stream Analytics, and SQL databases. Along the way, you’ll cover most of the topics needed to earn an Azure data engineering certification. What's inside Configuring Azure services for speed and cost Constructing data pipelines with Data Factory Choosing the right data storage methods About the reader For readers familiar with database management. Examples in C# and PowerShell. About the author Richard Nuckolls is a senior developer building big data analytics and reporting systems in Azure. Table of Contents 1 What is data engineering? 2 Building an analytics system in Azure 3 General storage with Azure Storage accounts 4 Azure Data Lake Storage 5 Message handling with Event Hubs 6 Real-time queries with Azure Stream Analytics 7 Batch queries with Azure Data Lake Analytics 8 U-SQL for complex analytics 9 Integrating with Azure Data Lake Analytics 10 Service integration with Azure Data Factory 11 Managed SQL with Azure SQL Database 12 Integrating Data Factory with SQL Database 13 Where to go next
Stream Analytics with Microsoft Azure
Author: Anindita Basak
Publisher: Packt Publishing Ltd
ISBN: 1788390628
Category : Computers
Languages : en
Pages : 314
Book Description
Develop and manage effective real-time streaming solutions by leveraging the power of Microsoft Azure About This Book Analyze your data from various sources using Microsoft Azure Stream Analytics Develop, manage and automate your stream analytics solution with Microsoft Azure A practical guide to real-time event processing and performing analytics on the cloud Who This Book Is For If you are looking for a resource that teaches you how to process continuous streams of data in real-time, this book is what you need. A basic understanding of the concepts in analytics is all you need to get started with this book What You Will Learn Perform real-time event processing with Azure Stream Analysis Incorporate the features of Big Data Lambda architecture pattern in real-time data processing Design a streaming pipeline for storage and batch analysis Implement data transformation and computation activities over stream of events Automate your streaming pipeline using Powershell and the .NET SDK Integrate your streaming pipeline with popular Machine Learning and Predictive Analytics modelling algorithms Monitor and troubleshoot your Azure Streaming jobs effectively In Detail Microsoft Azure is a very popular cloud computing service used by many organizations around the world. Its latest analytics offering, Stream Analytics, allows you to process and get actionable insights from different kinds of data in real-time. This book is your guide to understanding the basics of how Azure Stream Analytics works, and building your own analytics solution using its capabilities. You will start with understanding what Stream Analytics is, and why it is a popular choice for getting real-time insights from data. Then, you will be introduced to Azure Stream Analytics, and see how you can use the tools and functions in Azure to develop your own Streaming Analytics. Over the course of the book, you will be given comparative analytic guidance on using Azure Streaming with other Microsoft Data Platform resources such as Big Data Lambda Architecture integration for real time data analysis and differences of scenarios for architecture designing with Azure HDInsight Hadoop clusters with Storm or Stream Analytics. The book also shows you how you can manage, monitor, and scale your solution for optimal performance. By the end of this book, you will be well-versed in using Azure Stream Analytics to develop an efficient analytics solution that can work with any type of data. Style and approach A comprehensive guidance on developing real-time event processing with Azure Stream Analysis
Publisher: Packt Publishing Ltd
ISBN: 1788390628
Category : Computers
Languages : en
Pages : 314
Book Description
Develop and manage effective real-time streaming solutions by leveraging the power of Microsoft Azure About This Book Analyze your data from various sources using Microsoft Azure Stream Analytics Develop, manage and automate your stream analytics solution with Microsoft Azure A practical guide to real-time event processing and performing analytics on the cloud Who This Book Is For If you are looking for a resource that teaches you how to process continuous streams of data in real-time, this book is what you need. A basic understanding of the concepts in analytics is all you need to get started with this book What You Will Learn Perform real-time event processing with Azure Stream Analysis Incorporate the features of Big Data Lambda architecture pattern in real-time data processing Design a streaming pipeline for storage and batch analysis Implement data transformation and computation activities over stream of events Automate your streaming pipeline using Powershell and the .NET SDK Integrate your streaming pipeline with popular Machine Learning and Predictive Analytics modelling algorithms Monitor and troubleshoot your Azure Streaming jobs effectively In Detail Microsoft Azure is a very popular cloud computing service used by many organizations around the world. Its latest analytics offering, Stream Analytics, allows you to process and get actionable insights from different kinds of data in real-time. This book is your guide to understanding the basics of how Azure Stream Analytics works, and building your own analytics solution using its capabilities. You will start with understanding what Stream Analytics is, and why it is a popular choice for getting real-time insights from data. Then, you will be introduced to Azure Stream Analytics, and see how you can use the tools and functions in Azure to develop your own Streaming Analytics. Over the course of the book, you will be given comparative analytic guidance on using Azure Streaming with other Microsoft Data Platform resources such as Big Data Lambda Architecture integration for real time data analysis and differences of scenarios for architecture designing with Azure HDInsight Hadoop clusters with Storm or Stream Analytics. The book also shows you how you can manage, monitor, and scale your solution for optimal performance. By the end of this book, you will be well-versed in using Azure Stream Analytics to develop an efficient analytics solution that can work with any type of data. Style and approach A comprehensive guidance on developing real-time event processing with Azure Stream Analysis
Azure Data Engineering Cookbook
Author: Ahmad Osama
Publisher: Packt Publishing Ltd
ISBN: 1800201540
Category : Computers
Languages : en
Pages : 455
Book Description
Over 90 recipes to help you orchestrate modern ETL/ELT workflows and perform analytics using Azure services more easily Key FeaturesBuild highly efficient ETL pipelines using the Microsoft Azure Data servicesCreate and execute real-time processing solutions using Azure Databricks, Azure Stream Analytics, and Azure Data ExplorerDesign and execute batch processing solutions using Azure Data FactoryBook Description Data engineering is one of the faster growing job areas as Data Engineers are the ones who ensure that the data is extracted, provisioned and the data is of the highest quality for data analysis. This book uses various Azure services to implement and maintain infrastructure to extract data from multiple sources, and then transform and load it for data analysis. It takes you through different techniques for performing big data engineering using Microsoft Azure Data services. It begins by showing you how Azure Blob storage can be used for storing large amounts of unstructured data and how to use it for orchestrating a data workflow. You'll then work with different Cosmos DB APIs and Azure SQL Database. Moving on, you'll discover how to provision an Azure Synapse database and find out how to ingest and analyze data in Azure Synapse. As you advance, you'll cover the design and implementation of batch processing solutions using Azure Data Factory, and understand how to manage, maintain, and secure Azure Data Factory pipelines. You'll also design and implement batch processing solutions using Azure Databricks and then manage and secure Azure Databricks clusters and jobs. In the concluding chapters, you'll learn how to process streaming data using Azure Stream Analytics and Data Explorer. By the end of this Azure book, you'll have gained the knowledge you need to be able to orchestrate batch and real-time ETL workflows in Microsoft Azure. What you will learnUse Azure Blob storage for storing large amounts of unstructured dataPerform CRUD operations on the Cosmos Table APIImplement elastic pools and business continuity with Azure SQL DatabaseIngest and analyze data using Azure Synapse AnalyticsDevelop Data Factory data flows to extract data from multiple sourcesManage, maintain, and secure Azure Data Factory pipelinesProcess streaming data using Azure Stream Analytics and Data ExplorerWho this book is for This book is for Data Engineers, Database administrators, Database developers, and extract, load, transform (ETL) developers looking to build expertise in Azure Data engineering using a recipe-based approach. Technical architects and database architects with experience in designing data or ETL applications either on-premise or on any other cloud vendor who wants to learn Azure Data engineering concepts will also find this book useful. Prior knowledge of Azure fundamentals and data engineering concepts is needed.
Publisher: Packt Publishing Ltd
ISBN: 1800201540
Category : Computers
Languages : en
Pages : 455
Book Description
Over 90 recipes to help you orchestrate modern ETL/ELT workflows and perform analytics using Azure services more easily Key FeaturesBuild highly efficient ETL pipelines using the Microsoft Azure Data servicesCreate and execute real-time processing solutions using Azure Databricks, Azure Stream Analytics, and Azure Data ExplorerDesign and execute batch processing solutions using Azure Data FactoryBook Description Data engineering is one of the faster growing job areas as Data Engineers are the ones who ensure that the data is extracted, provisioned and the data is of the highest quality for data analysis. This book uses various Azure services to implement and maintain infrastructure to extract data from multiple sources, and then transform and load it for data analysis. It takes you through different techniques for performing big data engineering using Microsoft Azure Data services. It begins by showing you how Azure Blob storage can be used for storing large amounts of unstructured data and how to use it for orchestrating a data workflow. You'll then work with different Cosmos DB APIs and Azure SQL Database. Moving on, you'll discover how to provision an Azure Synapse database and find out how to ingest and analyze data in Azure Synapse. As you advance, you'll cover the design and implementation of batch processing solutions using Azure Data Factory, and understand how to manage, maintain, and secure Azure Data Factory pipelines. You'll also design and implement batch processing solutions using Azure Databricks and then manage and secure Azure Databricks clusters and jobs. In the concluding chapters, you'll learn how to process streaming data using Azure Stream Analytics and Data Explorer. By the end of this Azure book, you'll have gained the knowledge you need to be able to orchestrate batch and real-time ETL workflows in Microsoft Azure. What you will learnUse Azure Blob storage for storing large amounts of unstructured dataPerform CRUD operations on the Cosmos Table APIImplement elastic pools and business continuity with Azure SQL DatabaseIngest and analyze data using Azure Synapse AnalyticsDevelop Data Factory data flows to extract data from multiple sourcesManage, maintain, and secure Azure Data Factory pipelinesProcess streaming data using Azure Stream Analytics and Data ExplorerWho this book is for This book is for Data Engineers, Database administrators, Database developers, and extract, load, transform (ETL) developers looking to build expertise in Azure Data engineering using a recipe-based approach. Technical architects and database architects with experience in designing data or ETL applications either on-premise or on any other cloud vendor who wants to learn Azure Data engineering concepts will also find this book useful. Prior knowledge of Azure fundamentals and data engineering concepts is needed.
Mastering Azure Analytics
Author: Zoiner Tejada
Publisher: "O'Reilly Media, Inc."
ISBN: 1491956623
Category : Computers
Languages : en
Pages : 411
Book Description
Helps users understand the breadth of Azure services by organizing them into a reference framework they can use when crafting their own big-data analytics solution.
Publisher: "O'Reilly Media, Inc."
ISBN: 1491956623
Category : Computers
Languages : en
Pages : 411
Book Description
Helps users understand the breadth of Azure services by organizing them into a reference framework they can use when crafting their own big-data analytics solution.
Cloud Scale Analytics with Azure Data Services
Author: Patrik Borosch
Publisher: Packt Publishing Ltd
ISBN: 1800562144
Category : Computers
Languages : en
Pages : 520
Book Description
A practical guide to implementing a scalable and fast state-of-the-art analytical data estate Key FeaturesStore and analyze data with enterprise-grade security and auditingPerform batch, streaming, and interactive analytics to optimize your big data solutions with easeDevelop and run parallel data processing programs using real-world enterprise scenariosBook Description Azure Data Lake, the modern data warehouse architecture, and related data services on Azure enable organizations to build their own customized analytical platform to fit any analytical requirements in terms of volume, speed, and quality. This book is your guide to learning all the features and capabilities of Azure data services for storing, processing, and analyzing data (structured, unstructured, and semi-structured) of any size. You will explore key techniques for ingesting and storing data and perform batch, streaming, and interactive analytics. The book also shows you how to overcome various challenges and complexities relating to productivity and scaling. Next, you will be able to develop and run massive data workloads to perform different actions. Using a cloud-based big data-modern data warehouse-analytics setup, you will also be able to build secure, scalable data estates for enterprises. Finally, you will not only learn how to develop a data warehouse but also understand how to create enterprise-grade security and auditing big data programs. By the end of this Azure book, you will have learned how to develop a powerful and efficient analytical platform to meet enterprise needs. What you will learnImplement data governance with Azure servicesUse integrated monitoring in the Azure Portal and integrate Azure Data Lake Storage into the Azure MonitorExplore the serverless feature for ad-hoc data discovery, logical data warehousing, and data wranglingImplement networking with Synapse Analytics and Spark poolsCreate and run Spark jobs with Databricks clustersImplement streaming using Azure Functions, a serverless runtime environment on AzureExplore the predefined ML services in Azure and use them in your appWho this book is for This book is for data architects, ETL developers, or anyone who wants to get well-versed with Azure data services to implement an analytical data estate for their enterprise. The book will also appeal to data scientists and data analysts who want to explore all the capabilities of Azure data services, which can be used to store, process, and analyze any kind of data. A beginner-level understanding of data analysis and streaming will be required.
Publisher: Packt Publishing Ltd
ISBN: 1800562144
Category : Computers
Languages : en
Pages : 520
Book Description
A practical guide to implementing a scalable and fast state-of-the-art analytical data estate Key FeaturesStore and analyze data with enterprise-grade security and auditingPerform batch, streaming, and interactive analytics to optimize your big data solutions with easeDevelop and run parallel data processing programs using real-world enterprise scenariosBook Description Azure Data Lake, the modern data warehouse architecture, and related data services on Azure enable organizations to build their own customized analytical platform to fit any analytical requirements in terms of volume, speed, and quality. This book is your guide to learning all the features and capabilities of Azure data services for storing, processing, and analyzing data (structured, unstructured, and semi-structured) of any size. You will explore key techniques for ingesting and storing data and perform batch, streaming, and interactive analytics. The book also shows you how to overcome various challenges and complexities relating to productivity and scaling. Next, you will be able to develop and run massive data workloads to perform different actions. Using a cloud-based big data-modern data warehouse-analytics setup, you will also be able to build secure, scalable data estates for enterprises. Finally, you will not only learn how to develop a data warehouse but also understand how to create enterprise-grade security and auditing big data programs. By the end of this Azure book, you will have learned how to develop a powerful and efficient analytical platform to meet enterprise needs. What you will learnImplement data governance with Azure servicesUse integrated monitoring in the Azure Portal and integrate Azure Data Lake Storage into the Azure MonitorExplore the serverless feature for ad-hoc data discovery, logical data warehousing, and data wranglingImplement networking with Synapse Analytics and Spark poolsCreate and run Spark jobs with Databricks clustersImplement streaming using Azure Functions, a serverless runtime environment on AzureExplore the predefined ML services in Azure and use them in your appWho this book is for This book is for data architects, ETL developers, or anyone who wants to get well-versed with Azure data services to implement an analytical data estate for their enterprise. The book will also appeal to data scientists and data analysts who want to explore all the capabilities of Azure data services, which can be used to store, process, and analyze any kind of data. A beginner-level understanding of data analysis and streaming will be required.
Limitless Analytics with Azure Synapse
Author: Prashant Kumar Mishra
Publisher: Packt Publishing Ltd
ISBN: 1800206976
Category : Computers
Languages : en
Pages : 392
Book Description
Leverage the Azure analytics platform's key analytics services to deliver unmatched intelligence for your data Key FeaturesLearn to ingest, prepare, manage, and serve data for immediate business requirementsBring enterprise data warehousing and big data analytics together to gain insights from your dataDevelop end-to-end analytics solutions using Azure SynapseBook Description Azure Synapse Analytics, which Microsoft describes as the next evolution of Azure SQL Data Warehouse, is a limitless analytics service that brings enterprise data warehousing and big data analytics together. With this book, you'll learn how to discover insights from your data effectively using this platform. The book starts with an overview of Azure Synapse Analytics, its architecture, and how it can be used to improve business intelligence and machine learning capabilities. Next, you'll go on to choose and set up the correct environment for your business problem. You'll also learn a variety of ways to ingest data from various sources and orchestrate the data using transformation techniques offered by Azure Synapse. Later, you'll explore how to handle both relational and non-relational data using the SQL language. As you progress, you'll perform real-time streaming and execute data analysis operations on your data using various languages, before going on to apply ML techniques to derive accurate and granular insights from data. Finally, you'll discover how to protect sensitive data in real time by using security and privacy features. By the end of this Azure book, you'll be able to build end-to-end analytics solutions while focusing on data prep, data management, data warehousing, and AI tasks. What you will learnExplore the necessary considerations for data ingestion and orchestration while building analytical pipelinesUnderstand pipelines and activities in Synapse pipelines and use them to construct end-to-end data-driven workflowsQuery data using various coding languages on Azure SynapseFocus on Synapse SQL and Synapse SparkManage and monitor resource utilization and query activity in Azure SynapseConnect Power BI workspaces with Azure Synapse and create or modify reports directly from Synapse StudioCreate and manage IP firewall rules in Azure SynapseWho this book is for This book is for data architects, data scientists, data engineers, and business analysts who are looking to get up and running with the Azure Synapse Analytics platform. Basic knowledge of data warehousing will be beneficial to help you understand the concepts covered in this book more effectively.
Publisher: Packt Publishing Ltd
ISBN: 1800206976
Category : Computers
Languages : en
Pages : 392
Book Description
Leverage the Azure analytics platform's key analytics services to deliver unmatched intelligence for your data Key FeaturesLearn to ingest, prepare, manage, and serve data for immediate business requirementsBring enterprise data warehousing and big data analytics together to gain insights from your dataDevelop end-to-end analytics solutions using Azure SynapseBook Description Azure Synapse Analytics, which Microsoft describes as the next evolution of Azure SQL Data Warehouse, is a limitless analytics service that brings enterprise data warehousing and big data analytics together. With this book, you'll learn how to discover insights from your data effectively using this platform. The book starts with an overview of Azure Synapse Analytics, its architecture, and how it can be used to improve business intelligence and machine learning capabilities. Next, you'll go on to choose and set up the correct environment for your business problem. You'll also learn a variety of ways to ingest data from various sources and orchestrate the data using transformation techniques offered by Azure Synapse. Later, you'll explore how to handle both relational and non-relational data using the SQL language. As you progress, you'll perform real-time streaming and execute data analysis operations on your data using various languages, before going on to apply ML techniques to derive accurate and granular insights from data. Finally, you'll discover how to protect sensitive data in real time by using security and privacy features. By the end of this Azure book, you'll be able to build end-to-end analytics solutions while focusing on data prep, data management, data warehousing, and AI tasks. What you will learnExplore the necessary considerations for data ingestion and orchestration while building analytical pipelinesUnderstand pipelines and activities in Synapse pipelines and use them to construct end-to-end data-driven workflowsQuery data using various coding languages on Azure SynapseFocus on Synapse SQL and Synapse SparkManage and monitor resource utilization and query activity in Azure SynapseConnect Power BI workspaces with Azure Synapse and create or modify reports directly from Synapse StudioCreate and manage IP firewall rules in Azure SynapseWho this book is for This book is for data architects, data scientists, data engineers, and business analysts who are looking to get up and running with the Azure Synapse Analytics platform. Basic knowledge of data warehousing will be beneficial to help you understand the concepts covered in this book more effectively.
Real-Time Analytics
Author: Byron Ellis
Publisher: John Wiley & Sons
ISBN: 1118838025
Category : Computers
Languages : en
Pages : 432
Book Description
Construct a robust end-to-end solution for analyzing and visualizing streaming data Real-time analytics is the hottest topic in data analytics today. In Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, expert Byron Ellis teaches data analysts technologies to build an effective real-time analytics platform. This platform can then be used to make sense of the constantly changing data that is beginning to outpace traditional batch-based analysis platforms. The author is among a very few leading experts in the field. He has a prestigious background in research, development, analytics, real-time visualization, and Big Data streaming and is uniquely qualified to help you explore this revolutionary field. Moving from a description of the overall analytic architecture of real-time analytics to using specific tools to obtain targeted results, Real-Time Analytics leverages open source and modern commercial tools to construct robust, efficient systems that can provide real-time analysis in a cost-effective manner. The book includes: A deep discussion of streaming data systems and architectures Instructions for analyzing, storing, and delivering streaming data Tips on aggregating data and working with sets Information on data warehousing options and techniques Real-Time Analytics includes in-depth case studies for website analytics, Big Data, visualizing streaming and mobile data, and mining and visualizing operational data flows. The book's "recipe" layout lets readers quickly learn and implement different techniques. All of the code examples presented in the book, along with their related data sets, are available on the companion website.
Publisher: John Wiley & Sons
ISBN: 1118838025
Category : Computers
Languages : en
Pages : 432
Book Description
Construct a robust end-to-end solution for analyzing and visualizing streaming data Real-time analytics is the hottest topic in data analytics today. In Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, expert Byron Ellis teaches data analysts technologies to build an effective real-time analytics platform. This platform can then be used to make sense of the constantly changing data that is beginning to outpace traditional batch-based analysis platforms. The author is among a very few leading experts in the field. He has a prestigious background in research, development, analytics, real-time visualization, and Big Data streaming and is uniquely qualified to help you explore this revolutionary field. Moving from a description of the overall analytic architecture of real-time analytics to using specific tools to obtain targeted results, Real-Time Analytics leverages open source and modern commercial tools to construct robust, efficient systems that can provide real-time analysis in a cost-effective manner. The book includes: A deep discussion of streaming data systems and architectures Instructions for analyzing, storing, and delivering streaming data Tips on aggregating data and working with sets Information on data warehousing options and techniques Real-Time Analytics includes in-depth case studies for website analytics, Big Data, visualizing streaming and mobile data, and mining and visualizing operational data flows. The book's "recipe" layout lets readers quickly learn and implement different techniques. All of the code examples presented in the book, along with their related data sets, are available on the companion website.
Microsoft Azure Data Solutions - an Introduction
Author: Daniel Seara
Publisher: Microsoft Press
ISBN: 9780137252503
Category :
Languages : en
Pages : 0
Book Description
Cloud technologies are advancing at an accelerating pace, supplanting traditional relational and data warehouse storage solutions with novel, high-value alternatives. In this book three pioneering Microsoft Azure Data consultants offer an expert introduction to the relational, non-relational, and data warehouse solutions offered by the Azure platform. Drawing on their extensive experience helping organizations get more value from the Microsoft Data Platform, the authors guide students through decision-making, implementation, operations, security, and more. Throughout, step-by-step tutorials and hands-on exercises prepare them to succeed, even if they have no cloud data experience.
Publisher: Microsoft Press
ISBN: 9780137252503
Category :
Languages : en
Pages : 0
Book Description
Cloud technologies are advancing at an accelerating pace, supplanting traditional relational and data warehouse storage solutions with novel, high-value alternatives. In this book three pioneering Microsoft Azure Data consultants offer an expert introduction to the relational, non-relational, and data warehouse solutions offered by the Azure platform. Drawing on their extensive experience helping organizations get more value from the Microsoft Data Platform, the authors guide students through decision-making, implementation, operations, security, and more. Throughout, step-by-step tutorials and hands-on exercises prepare them to succeed, even if they have no cloud data experience.
Data Lake Analytics on Microsoft Azure
Author: Harsh Chawla
Publisher: Apress
ISBN: 9781484262511
Category : Computers
Languages : en
Pages : 228
Book Description
Get a 360-degree view of how the journey of data analytics solutions has evolved from monolithic data stores and enterprise data warehouses to data lakes and modern data warehouses. You will This book includes comprehensive coverage of how: To architect data lake analytics solutions by choosing suitable technologies available on Microsoft Azure The advent of microservices applications covering ecommerce or modern solutions built on IoT and how real-time streaming data has completely disrupted this ecosystem These data analytics solutions have been transformed from solely understanding the trends from historical data to building predictions by infusing machine learning technologies into the solutions Data platform professionals who have been working on relational data stores, non-relational data stores, and big data technologies will find the content in this book useful. The book also can help you start your journey into the data engineer world as it provides an overview of advanced data analytics and touches on data science concepts and various artificial intelligence and machine learning technologies available on Microsoft Azure. What Will You Learn You will understand the: Concepts of data lake analytics, the modern data warehouse, and advanced data analytics Architecture patterns of the modern data warehouse and advanced data analytics solutions Phases—such as Data Ingestion, Store, Prep and Train, and Model and Serve—of data analytics solutions and technology choices available on Azure under each phase In-depth coverage of real-time and batch mode data analytics solutions architecture Various managed services available on Azure such as Synapse analytics, event hubs, Stream analytics, CosmosDB, and managed Hadoop services such as Databricks and HDInsight Who This Book Is For Data platform professionals, database architects, engineers, and solution architects
Publisher: Apress
ISBN: 9781484262511
Category : Computers
Languages : en
Pages : 228
Book Description
Get a 360-degree view of how the journey of data analytics solutions has evolved from monolithic data stores and enterprise data warehouses to data lakes and modern data warehouses. You will This book includes comprehensive coverage of how: To architect data lake analytics solutions by choosing suitable technologies available on Microsoft Azure The advent of microservices applications covering ecommerce or modern solutions built on IoT and how real-time streaming data has completely disrupted this ecosystem These data analytics solutions have been transformed from solely understanding the trends from historical data to building predictions by infusing machine learning technologies into the solutions Data platform professionals who have been working on relational data stores, non-relational data stores, and big data technologies will find the content in this book useful. The book also can help you start your journey into the data engineer world as it provides an overview of advanced data analytics and touches on data science concepts and various artificial intelligence and machine learning technologies available on Microsoft Azure. What Will You Learn You will understand the: Concepts of data lake analytics, the modern data warehouse, and advanced data analytics Architecture patterns of the modern data warehouse and advanced data analytics solutions Phases—such as Data Ingestion, Store, Prep and Train, and Model and Serve—of data analytics solutions and technology choices available on Azure under each phase In-depth coverage of real-time and batch mode data analytics solutions architecture Various managed services available on Azure such as Synapse analytics, event hubs, Stream analytics, CosmosDB, and managed Hadoop services such as Databricks and HDInsight Who This Book Is For Data platform professionals, database architects, engineers, and solution architects