Author: John M. Lee
Publisher: American Mathematical Soc.
ISBN: 0821884786
Category : Mathematics
Languages : en
Pages : 490
Book Description
The story of geometry is the story of mathematics itself: Euclidean geometry was the first branch of mathematics to be systematically studied and placed on a firm logical foundation, and it is the prototype for the axiomatic method that lies at the foundation of modern mathematics. It has been taught to students for more than two millennia as a mode of logical thought. This book tells the story of how the axiomatic method has progressed from Euclid's time to ours, as a way of understanding what mathematics is, how we read and evaluate mathematical arguments, and why mathematics has achieved the level of certainty it has. It is designed primarily for advanced undergraduates who plan to teach secondary school geometry, but it should also provide something of interest to anyone who wishes to understand geometry and the axiomatic method better. It introduces a modern, rigorous, axiomatic treatment of Euclidean and (to a lesser extent) non-Euclidean geometries, offering students ample opportunities to practice reading and writing proofs while at the same time developing most of the concrete geometric relationships that secondary teachers will need to know in the classroom. -- P. [4] of cover.
Axiomatic Geometry
Author: John M. Lee
Publisher: American Mathematical Soc.
ISBN: 0821884786
Category : Mathematics
Languages : en
Pages : 490
Book Description
The story of geometry is the story of mathematics itself: Euclidean geometry was the first branch of mathematics to be systematically studied and placed on a firm logical foundation, and it is the prototype for the axiomatic method that lies at the foundation of modern mathematics. It has been taught to students for more than two millennia as a mode of logical thought. This book tells the story of how the axiomatic method has progressed from Euclid's time to ours, as a way of understanding what mathematics is, how we read and evaluate mathematical arguments, and why mathematics has achieved the level of certainty it has. It is designed primarily for advanced undergraduates who plan to teach secondary school geometry, but it should also provide something of interest to anyone who wishes to understand geometry and the axiomatic method better. It introduces a modern, rigorous, axiomatic treatment of Euclidean and (to a lesser extent) non-Euclidean geometries, offering students ample opportunities to practice reading and writing proofs while at the same time developing most of the concrete geometric relationships that secondary teachers will need to know in the classroom. -- P. [4] of cover.
Publisher: American Mathematical Soc.
ISBN: 0821884786
Category : Mathematics
Languages : en
Pages : 490
Book Description
The story of geometry is the story of mathematics itself: Euclidean geometry was the first branch of mathematics to be systematically studied and placed on a firm logical foundation, and it is the prototype for the axiomatic method that lies at the foundation of modern mathematics. It has been taught to students for more than two millennia as a mode of logical thought. This book tells the story of how the axiomatic method has progressed from Euclid's time to ours, as a way of understanding what mathematics is, how we read and evaluate mathematical arguments, and why mathematics has achieved the level of certainty it has. It is designed primarily for advanced undergraduates who plan to teach secondary school geometry, but it should also provide something of interest to anyone who wishes to understand geometry and the axiomatic method better. It introduces a modern, rigorous, axiomatic treatment of Euclidean and (to a lesser extent) non-Euclidean geometries, offering students ample opportunities to practice reading and writing proofs while at the same time developing most of the concrete geometric relationships that secondary teachers will need to know in the classroom. -- P. [4] of cover.
An Axiomatic Approach to Geometry
Author: Francis Borceux
Publisher: Springer Science & Business Media
ISBN: 3319017306
Category : Mathematics
Languages : en
Pages : 410
Book Description
Focusing methodologically on those historical aspects that are relevant to supporting intuition in axiomatic approaches to geometry, the book develops systematic and modern approaches to the three core aspects of axiomatic geometry: Euclidean, non-Euclidean and projective. Historically, axiomatic geometry marks the origin of formalized mathematical activity. It is in this discipline that most historically famous problems can be found, the solutions of which have led to various presently very active domains of research, especially in algebra. The recognition of the coherence of two-by-two contradictory axiomatic systems for geometry (like one single parallel, no parallel at all, several parallels) has led to the emergence of mathematical theories based on an arbitrary system of axioms, an essential feature of contemporary mathematics. This is a fascinating book for all those who teach or study axiomatic geometry, and who are interested in the history of geometry or who want to see a complete proof of one of the famous problems encountered, but not solved, during their studies: circle squaring, duplication of the cube, trisection of the angle, construction of regular polygons, construction of models of non-Euclidean geometries, etc. It also provides hundreds of figures that support intuition. Through 35 centuries of the history of geometry, discover the birth and follow the evolution of those innovative ideas that allowed humankind to develop so many aspects of contemporary mathematics. Understand the various levels of rigor which successively established themselves through the centuries. Be amazed, as mathematicians of the 19th century were, when observing that both an axiom and its contradiction can be chosen as a valid basis for developing a mathematical theory. Pass through the door of this incredible world of axiomatic mathematical theories!
Publisher: Springer Science & Business Media
ISBN: 3319017306
Category : Mathematics
Languages : en
Pages : 410
Book Description
Focusing methodologically on those historical aspects that are relevant to supporting intuition in axiomatic approaches to geometry, the book develops systematic and modern approaches to the three core aspects of axiomatic geometry: Euclidean, non-Euclidean and projective. Historically, axiomatic geometry marks the origin of formalized mathematical activity. It is in this discipline that most historically famous problems can be found, the solutions of which have led to various presently very active domains of research, especially in algebra. The recognition of the coherence of two-by-two contradictory axiomatic systems for geometry (like one single parallel, no parallel at all, several parallels) has led to the emergence of mathematical theories based on an arbitrary system of axioms, an essential feature of contemporary mathematics. This is a fascinating book for all those who teach or study axiomatic geometry, and who are interested in the history of geometry or who want to see a complete proof of one of the famous problems encountered, but not solved, during their studies: circle squaring, duplication of the cube, trisection of the angle, construction of regular polygons, construction of models of non-Euclidean geometries, etc. It also provides hundreds of figures that support intuition. Through 35 centuries of the history of geometry, discover the birth and follow the evolution of those innovative ideas that allowed humankind to develop so many aspects of contemporary mathematics. Understand the various levels of rigor which successively established themselves through the centuries. Be amazed, as mathematicians of the 19th century were, when observing that both an axiom and its contradiction can be chosen as a valid basis for developing a mathematical theory. Pass through the door of this incredible world of axiomatic mathematical theories!
Geometry: Euclid and Beyond
Author: Robin Hartshorne
Publisher: Springer Science & Business Media
ISBN: 0387226761
Category : Mathematics
Languages : en
Pages : 535
Book Description
This book offers a unique opportunity to understand the essence of one of the great thinkers of western civilization. A guided reading of Euclid's Elements leads to a critical discussion and rigorous modern treatment of Euclid's geometry and its more recent descendants, with complete proofs. Topics include the introduction of coordinates, the theory of area, history of the parallel postulate, the various non-Euclidean geometries, and the regular and semi-regular polyhedra.
Publisher: Springer Science & Business Media
ISBN: 0387226761
Category : Mathematics
Languages : en
Pages : 535
Book Description
This book offers a unique opportunity to understand the essence of one of the great thinkers of western civilization. A guided reading of Euclid's Elements leads to a critical discussion and rigorous modern treatment of Euclid's geometry and its more recent descendants, with complete proofs. Topics include the introduction of coordinates, the theory of area, history of the parallel postulate, the various non-Euclidean geometries, and the regular and semi-regular polyhedra.
The Foundations of Geometry
Author: David Hilbert
Publisher: Read Books Ltd
ISBN: 1473395941
Category : History
Languages : en
Pages : 139
Book Description
This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.
Publisher: Read Books Ltd
ISBN: 1473395941
Category : History
Languages : en
Pages : 139
Book Description
This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.
Axiomatic Geometry
Author: Michael C. Gemignani
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 200
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 200
Book Description
Geometries
Author: Alekseĭ Bronislavovich Sosinskiĭ
Publisher: American Mathematical Soc.
ISBN: 082187571X
Category : Mathematics
Languages : en
Pages : 322
Book Description
The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms ``toy geometries'', the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking this knowledge may refer to a compendium in Chapter 0. Per the author's predilection, the book contains very little regarding the axiomatic approach to geometry (save for a single chapter on the history of non-Euclidean geometry), but two Appendices provide a detailed treatment of Euclid's and Hilbert's axiomatics. Perhaps the most important aspect of this course is the problems, which appear at the end of each chapter and are supplemented with answers at the conclusion of the text. By analyzing and solving these problems, the reader will become capable of thinking and working geometrically, much more so than by simply learning the theory. Ultimately, the author makes the distinction between concrete mathematical objects called ``geometries'' and the singular ``geometry'', which he understands as a way of thinking about mathematics. Although the book does not address branches of mathematics and mathematical physics such as Riemannian and Kahler manifolds or, say, differentiable manifolds and conformal field theories, the ideology of category language and transformation groups on which the book is based prepares the reader for the study of, and eventually, research in these important and rapidly developing areas of contemporary mathematics.
Publisher: American Mathematical Soc.
ISBN: 082187571X
Category : Mathematics
Languages : en
Pages : 322
Book Description
The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms ``toy geometries'', the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking this knowledge may refer to a compendium in Chapter 0. Per the author's predilection, the book contains very little regarding the axiomatic approach to geometry (save for a single chapter on the history of non-Euclidean geometry), but two Appendices provide a detailed treatment of Euclid's and Hilbert's axiomatics. Perhaps the most important aspect of this course is the problems, which appear at the end of each chapter and are supplemented with answers at the conclusion of the text. By analyzing and solving these problems, the reader will become capable of thinking and working geometrically, much more so than by simply learning the theory. Ultimately, the author makes the distinction between concrete mathematical objects called ``geometries'' and the singular ``geometry'', which he understands as a way of thinking about mathematics. Although the book does not address branches of mathematics and mathematical physics such as Riemannian and Kahler manifolds or, say, differentiable manifolds and conformal field theories, the ideology of category language and transformation groups on which the book is based prepares the reader for the study of, and eventually, research in these important and rapidly developing areas of contemporary mathematics.
Axiomatic Projective Geometry
Author: A. Heyting
Publisher: Elsevier
ISBN: 1483259315
Category : Mathematics
Languages : en
Pages : 161
Book Description
Bibliotheca Mathematica: A Series of Monographs on Pure and Applied Mathematics, Volume V: Axiomatic Projective Geometry, Second Edition focuses on the principles, operations, and theorems in axiomatic projective geometry, including set theory, incidence propositions, collineations, axioms, and coordinates. The publication first elaborates on the axiomatic method, notions from set theory and algebra, analytic projective geometry, and incidence propositions and coordinates in the plane. Discussions focus on ternary fields attached to a given projective plane, homogeneous coordinates, ternary field and axiom system, projectivities between lines, Desargues' proposition, and collineations. The book takes a look at incidence propositions and coordinates in space. Topics include coordinates of a point, equation of a plane, geometry over a given division ring, trivial axioms and propositions, sixteen points proposition, and homogeneous coordinates. The text examines the fundamental proposition of projective geometry and order, including cyclic order of the projective line, order and coordinates, geometry over an ordered ternary field, cyclically ordered sets, and fundamental proposition. The manuscript is a valuable source of data for mathematicians and researchers interested in axiomatic projective geometry.
Publisher: Elsevier
ISBN: 1483259315
Category : Mathematics
Languages : en
Pages : 161
Book Description
Bibliotheca Mathematica: A Series of Monographs on Pure and Applied Mathematics, Volume V: Axiomatic Projective Geometry, Second Edition focuses on the principles, operations, and theorems in axiomatic projective geometry, including set theory, incidence propositions, collineations, axioms, and coordinates. The publication first elaborates on the axiomatic method, notions from set theory and algebra, analytic projective geometry, and incidence propositions and coordinates in the plane. Discussions focus on ternary fields attached to a given projective plane, homogeneous coordinates, ternary field and axiom system, projectivities between lines, Desargues' proposition, and collineations. The book takes a look at incidence propositions and coordinates in space. Topics include coordinates of a point, equation of a plane, geometry over a given division ring, trivial axioms and propositions, sixteen points proposition, and homogeneous coordinates. The text examines the fundamental proposition of projective geometry and order, including cyclic order of the projective line, order and coordinates, geometry over an ordered ternary field, cyclically ordered sets, and fundamental proposition. The manuscript is a valuable source of data for mathematicians and researchers interested in axiomatic projective geometry.
Geometric Trilogy
Author: Francis Borceux
Publisher: Springer
ISBN: 9783319018041
Category : Mathematics
Languages : en
Pages : 1350
Book Description
The Trilogy intends to introduce the reader to the multiple complementary aspects of geometry, paying attention to the historical birth and growth of the ideas and results, and concluding with a contemporary presentation of the various topics considered. Three essentially independent volumes approach geometry via the axiomatic, the algebraic and the differential points of view. The “ruler and compass” approach to geometry, developed by the Greek mathematicians of the Antiquity, remained the only reference in Geometry – and even in Mathematics -- for more than two millenniums. The fruitless efforts for solving the so-called “classical problems” of Greek geometry lead eventually to a deeper reflection on the axiomatic bases of geometry, and in particular to the discovery of projective geometry and non-Euclidean geometries. During the Renaissance, mathematicians start liberating themselves from the “ruler and compass” dogma and use algebraic techniques to investigate geometric situations. The nineteenth century, with the birth of linear algebra and the theory of polynomials, opens new doors and in particular, the fascinating world of algebraic curves. The introduction of differential calculus during the eighteenth century allows widening considerably the range of curves and surfaces considered. The notion of curvature –under multiple forms -- imposes itself as an essential tool for studying the properties of curves and surfaces. And a keen study of some geometrical properties of surfaces gives rise to the theory of algebraic topology. This trilogy is of interest to all those who have to teach or study geometry and need to have a good global overview of the numerous facets of this fascinating topic. It provides both the intuitive and the technical ingredients needed to find one’s way through Euclidean, non-Euclidean, projective, algebraic or differential geometry at a high level.
Publisher: Springer
ISBN: 9783319018041
Category : Mathematics
Languages : en
Pages : 1350
Book Description
The Trilogy intends to introduce the reader to the multiple complementary aspects of geometry, paying attention to the historical birth and growth of the ideas and results, and concluding with a contemporary presentation of the various topics considered. Three essentially independent volumes approach geometry via the axiomatic, the algebraic and the differential points of view. The “ruler and compass” approach to geometry, developed by the Greek mathematicians of the Antiquity, remained the only reference in Geometry – and even in Mathematics -- for more than two millenniums. The fruitless efforts for solving the so-called “classical problems” of Greek geometry lead eventually to a deeper reflection on the axiomatic bases of geometry, and in particular to the discovery of projective geometry and non-Euclidean geometries. During the Renaissance, mathematicians start liberating themselves from the “ruler and compass” dogma and use algebraic techniques to investigate geometric situations. The nineteenth century, with the birth of linear algebra and the theory of polynomials, opens new doors and in particular, the fascinating world of algebraic curves. The introduction of differential calculus during the eighteenth century allows widening considerably the range of curves and surfaces considered. The notion of curvature –under multiple forms -- imposes itself as an essential tool for studying the properties of curves and surfaces. And a keen study of some geometrical properties of surfaces gives rise to the theory of algebraic topology. This trilogy is of interest to all those who have to teach or study geometry and need to have a good global overview of the numerous facets of this fascinating topic. It provides both the intuitive and the technical ingredients needed to find one’s way through Euclidean, non-Euclidean, projective, algebraic or differential geometry at a high level.
Euclid's Elements
Author: Euclid
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544
Book Description
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544
Book Description
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.
Roads to Geometry
Author: Edward C. Wallace
Publisher: Waveland Press
ISBN: 1478632046
Category : Mathematics
Languages : en
Pages : 510
Book Description
Now available from Waveland Press, the Third Edition of Roads to Geometry is appropriate for several kinds of students. Pre-service teachers of geometry are provided with a thorough yet accessible treatment of plane geometry in a historical context. Mathematics majors will find its axiomatic development sufficiently rigorous to provide a foundation for further study in the areas of Euclidean and non-Euclidean geometry. By using the SMSG postulate set as a basis for the development of plane geometry, the authors avoid the pitfalls of many “foundations of geometry” texts that encumber the reader with such a detailed development of preliminary results that many other substantive and elegant results are inaccessible in a one-semester course. At the end of each section is an ample collection of exercises of varying difficulty that provides problems that both extend and clarify results of that section, as well as problems that apply those results. At the end of chapters 3–7, a summary list of the new definitions and theorems of each chapter is included.
Publisher: Waveland Press
ISBN: 1478632046
Category : Mathematics
Languages : en
Pages : 510
Book Description
Now available from Waveland Press, the Third Edition of Roads to Geometry is appropriate for several kinds of students. Pre-service teachers of geometry are provided with a thorough yet accessible treatment of plane geometry in a historical context. Mathematics majors will find its axiomatic development sufficiently rigorous to provide a foundation for further study in the areas of Euclidean and non-Euclidean geometry. By using the SMSG postulate set as a basis for the development of plane geometry, the authors avoid the pitfalls of many “foundations of geometry” texts that encumber the reader with such a detailed development of preliminary results that many other substantive and elegant results are inaccessible in a one-semester course. At the end of each section is an ample collection of exercises of varying difficulty that provides problems that both extend and clarify results of that section, as well as problems that apply those results. At the end of chapters 3–7, a summary list of the new definitions and theorems of each chapter is included.