Author: Anthony Genevois
Publisher: American Mathematical Society
ISBN: 1470471396
Category : Mathematics
Languages : en
Pages : 140
Book Description
View the abstract.
Automorphisms of Graph Products of Groups and Acylindrical Hyperbolicity
Author: Anthony Genevois
Publisher: American Mathematical Society
ISBN: 1470471396
Category : Mathematics
Languages : en
Pages : 140
Book Description
View the abstract.
Publisher: American Mathematical Society
ISBN: 1470471396
Category : Mathematics
Languages : en
Pages : 140
Book Description
View the abstract.
In the Tradition of Thurston II
Author: Ken’ichi Ohshika
Publisher: Springer Nature
ISBN: 3030975606
Category : Mathematics
Languages : en
Pages : 525
Book Description
The purpose of this volume and of the other volumes in the same series is to provide a collection of surveys that allows the reader to learn the important aspects of William Thurston’s heritage. Thurston’s ideas have altered the course of twentieth century mathematics, and they continue to have a significant influence on succeeding generations of mathematicians. The topics covered in the present volume include com-plex hyperbolic Kleinian groups, Möbius structures, hyperbolic ends, cone 3-manifolds, Thurston’s norm, surgeries in representation varieties, triangulations, spaces of polygo-nal decompositions and of singular flat structures on surfaces, combination theorems in the theories of Kleinian groups, hyperbolic groups and holomorphic dynamics, the dynamics and iteration of rational maps, automatic groups, and the combinatorics of right-angled Artin groups.
Publisher: Springer Nature
ISBN: 3030975606
Category : Mathematics
Languages : en
Pages : 525
Book Description
The purpose of this volume and of the other volumes in the same series is to provide a collection of surveys that allows the reader to learn the important aspects of William Thurston’s heritage. Thurston’s ideas have altered the course of twentieth century mathematics, and they continue to have a significant influence on succeeding generations of mathematicians. The topics covered in the present volume include com-plex hyperbolic Kleinian groups, Möbius structures, hyperbolic ends, cone 3-manifolds, Thurston’s norm, surgeries in representation varieties, triangulations, spaces of polygo-nal decompositions and of singular flat structures on surfaces, combination theorems in the theories of Kleinian groups, hyperbolic groups and holomorphic dynamics, the dynamics and iteration of rational maps, automatic groups, and the combinatorics of right-angled Artin groups.
Hyperbolically Embedded Subgroups and Rotating Families in Groups Acting on Hyperbolic Spaces
Author: F. Dahmani
Publisher: American Mathematical Soc.
ISBN: 1470421941
Category : Mathematics
Languages : en
Pages : 164
Book Description
he authors introduce and study the notions of hyperbolically embedded and very rotating families of subgroups. The former notion can be thought of as a generalization of the peripheral structure of a relatively hyperbolic group, while the latter one provides a natural framework for developing a geometric version of small cancellation theory. Examples of such families naturally occur in groups acting on hyperbolic spaces including hyperbolic and relatively hyperbolic groups, mapping class groups, , and the Cremona group. Other examples can be found among groups acting geometrically on spaces, fundamental groups of graphs of groups, etc. The authors obtain a number of general results about rotating families and hyperbolically embedded subgroups; although their technique applies to a wide class of groups, it is capable of producing new results even for well-studied particular classes. For instance, the authors solve two open problems about mapping class groups, and obtain some results which are new even for relatively hyperbolic groups.
Publisher: American Mathematical Soc.
ISBN: 1470421941
Category : Mathematics
Languages : en
Pages : 164
Book Description
he authors introduce and study the notions of hyperbolically embedded and very rotating families of subgroups. The former notion can be thought of as a generalization of the peripheral structure of a relatively hyperbolic group, while the latter one provides a natural framework for developing a geometric version of small cancellation theory. Examples of such families naturally occur in groups acting on hyperbolic spaces including hyperbolic and relatively hyperbolic groups, mapping class groups, , and the Cremona group. Other examples can be found among groups acting geometrically on spaces, fundamental groups of graphs of groups, etc. The authors obtain a number of general results about rotating families and hyperbolically embedded subgroups; although their technique applies to a wide class of groups, it is capable of producing new results even for well-studied particular classes. For instance, the authors solve two open problems about mapping class groups, and obtain some results which are new even for relatively hyperbolic groups.
Self-Similar Groups
Author: Volodymyr Nekrashevych
Publisher: American Mathematical Soc.
ISBN: 0821838318
Category : Mathematics
Languages : en
Pages : 248
Book Description
Self-similar groups (groups generated by automata) initially appeared as examples of groups that are easy to define but have exotic properties like nontrivial torsion, intermediate growth, etc. This book studies the self-similarity phenomenon in group theory and shows its intimate relationship with dynamical systems and more classical self-similar structures, such as fractals, Julia sets, and self-affine tilings. This connection is established through the central topics of the book, which are the notions of the iterated monodromy group and limit space. A wide variety of examples and different applications of self-similar groups to dynamical systems and vice versa are discussed. In particular, it is shown that Julia sets can be reconstructed from the respective iterated monodromy groups and that groups with exotic properties can appear not just as isolated examples, but as naturally defined iterated monodromy groups of rational functions. The book offers important, new mathematics that will open new avenues of research in group theory and dynamical systems. It is intended to be accessible to a wide readership of professional mathematicians.
Publisher: American Mathematical Soc.
ISBN: 0821838318
Category : Mathematics
Languages : en
Pages : 248
Book Description
Self-similar groups (groups generated by automata) initially appeared as examples of groups that are easy to define but have exotic properties like nontrivial torsion, intermediate growth, etc. This book studies the self-similarity phenomenon in group theory and shows its intimate relationship with dynamical systems and more classical self-similar structures, such as fractals, Julia sets, and self-affine tilings. This connection is established through the central topics of the book, which are the notions of the iterated monodromy group and limit space. A wide variety of examples and different applications of self-similar groups to dynamical systems and vice versa are discussed. In particular, it is shown that Julia sets can be reconstructed from the respective iterated monodromy groups and that groups with exotic properties can appear not just as isolated examples, but as naturally defined iterated monodromy groups of rational functions. The book offers important, new mathematics that will open new avenues of research in group theory and dynamical systems. It is intended to be accessible to a wide readership of professional mathematicians.
3-manifold Groups
Author: Matthias Aschenbrenner
Publisher: Erich Schmidt Verlag GmbH & Co. KG
ISBN: 9783037191545
Category : Mathematics
Languages : en
Pages : 236
Book Description
The field of 3-manifold topology has made great strides forward since 1982 when Thurston articulated his influential list of questions. Primary among these is Perelman's proof of the Geometrization Conjecture, but other highlights include the Tameness Theorem of Agol and Calegari-Gabai, the Surface Subgroup Theorem of Kahn-Markovic, the work of Wise and others on special cube complexes, and, finally, Agol's proof of the Virtual Haken Conjecture. This book summarizes all these developments and provides an exhaustive account of the current state of the art of 3-manifold topology, especially focusing on the consequences for fundamental groups of 3-manifolds. As the first book on 3-manifold topology that incorporates the exciting progress of the last two decades, it will be an invaluable resource for researchers in the field who need a reference for these developments. It also gives a fast-paced introduction to this material. Although some familiarity with the fundamental group is recommended, little other previous knowledge is assumed, and the book is accessible to graduate students. The book closes with an extensive list of open questions which will also be of interest to graduate students and established researchers.
Publisher: Erich Schmidt Verlag GmbH & Co. KG
ISBN: 9783037191545
Category : Mathematics
Languages : en
Pages : 236
Book Description
The field of 3-manifold topology has made great strides forward since 1982 when Thurston articulated his influential list of questions. Primary among these is Perelman's proof of the Geometrization Conjecture, but other highlights include the Tameness Theorem of Agol and Calegari-Gabai, the Surface Subgroup Theorem of Kahn-Markovic, the work of Wise and others on special cube complexes, and, finally, Agol's proof of the Virtual Haken Conjecture. This book summarizes all these developments and provides an exhaustive account of the current state of the art of 3-manifold topology, especially focusing on the consequences for fundamental groups of 3-manifolds. As the first book on 3-manifold topology that incorporates the exciting progress of the last two decades, it will be an invaluable resource for researchers in the field who need a reference for these developments. It also gives a fast-paced introduction to this material. Although some familiarity with the fundamental group is recommended, little other previous knowledge is assumed, and the book is accessible to graduate students. The book closes with an extensive list of open questions which will also be of interest to graduate students and established researchers.
Beyond Hyperbolicity
Author: Mark Hagen
Publisher: Cambridge University Press
ISBN: 1108447295
Category : Mathematics
Languages : en
Pages : 242
Book Description
Contains expository articles and research papers in geometric group theory focusing on generalisations of Gromov hyperbolicity.
Publisher: Cambridge University Press
ISBN: 1108447295
Category : Mathematics
Languages : en
Pages : 242
Book Description
Contains expository articles and research papers in geometric group theory focusing on generalisations of Gromov hyperbolicity.
Hyperbolic Manifolds and Discrete Groups
Author: Michael Kapovich
Publisher: Springer Science & Business Media
ISBN: 0817649131
Category : Mathematics
Languages : en
Pages : 486
Book Description
Hyperbolic Manifolds and Discrete Groups is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis. The main focus throughout the text is on the "Big Monster," i.e., on Thurston’s hyperbolization theorem, which has not only completely changes the landscape of 3-dimensinal topology and Kleinian group theory but is one of the central results of 3-dimensional topology. The book is fairly self-contained, replete with beautiful illustrations, a rich set of examples of key concepts, numerous exercises, and an extensive bibliography and index. It should serve as an ideal graduate course/seminar text or as a comprehensive reference.
Publisher: Springer Science & Business Media
ISBN: 0817649131
Category : Mathematics
Languages : en
Pages : 486
Book Description
Hyperbolic Manifolds and Discrete Groups is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis. The main focus throughout the text is on the "Big Monster," i.e., on Thurston’s hyperbolization theorem, which has not only completely changes the landscape of 3-dimensinal topology and Kleinian group theory but is one of the central results of 3-dimensional topology. The book is fairly self-contained, replete with beautiful illustrations, a rich set of examples of key concepts, numerous exercises, and an extensive bibliography and index. It should serve as an ideal graduate course/seminar text or as a comprehensive reference.
Problems on Mapping Class Groups and Related Topics
Author: Benson Farb
Publisher: American Mathematical Soc.
ISBN: 0821838385
Category : Mathematics
Languages : en
Pages : 384
Book Description
The appearance of mapping class groups in mathematics is ubiquitous. The book presents 23 papers containing problems about mapping class groups, the moduli space of Riemann surfaces, Teichmuller geometry, and related areas. Each paper focusses completely on open problems and directions. The problems range in scope from specific computations, to broad programs. The goal is to have a rich source of problems which have been formulated explicitly and accessibly. The book is divided into four parts. Part I contains problems on the combinatorial and (co)homological group-theoretic aspects of mapping class groups, and the way in which these relate to problems in geometry and topology. Part II concentrates on connections with classification problems in 3-manifold theory, the theory of symplectic 4-manifolds, and algebraic geometry. A wide variety of problems, from understanding billiard trajectories to the classification of Kleinian groups, can be reduced to differential and synthetic geometry problems about moduli space. Such problems and connections are discussed in Part III. Mapping class groups are related, both concretely and philosophically, to a number of other groups, such as braid groups, lattices in semisimple Lie groups, and automorphism groups of free groups. Part IV concentrates on problems surrounding these relationships. This book should be of interest to anyone studying geometry, topology, algebraic geometry or infinite groups. It is meant to provide inspiration for everyone from graduate students to senior researchers.
Publisher: American Mathematical Soc.
ISBN: 0821838385
Category : Mathematics
Languages : en
Pages : 384
Book Description
The appearance of mapping class groups in mathematics is ubiquitous. The book presents 23 papers containing problems about mapping class groups, the moduli space of Riemann surfaces, Teichmuller geometry, and related areas. Each paper focusses completely on open problems and directions. The problems range in scope from specific computations, to broad programs. The goal is to have a rich source of problems which have been formulated explicitly and accessibly. The book is divided into four parts. Part I contains problems on the combinatorial and (co)homological group-theoretic aspects of mapping class groups, and the way in which these relate to problems in geometry and topology. Part II concentrates on connections with classification problems in 3-manifold theory, the theory of symplectic 4-manifolds, and algebraic geometry. A wide variety of problems, from understanding billiard trajectories to the classification of Kleinian groups, can be reduced to differential and synthetic geometry problems about moduli space. Such problems and connections are discussed in Part III. Mapping class groups are related, both concretely and philosophically, to a number of other groups, such as braid groups, lattices in semisimple Lie groups, and automorphism groups of free groups. Part IV concentrates on problems surrounding these relationships. This book should be of interest to anyone studying geometry, topology, algebraic geometry or infinite groups. It is meant to provide inspiration for everyone from graduate students to senior researchers.
Holomorphic Curves in Low Dimensions
Author: Chris Wendl
Publisher: Springer
ISBN: 3319913719
Category : Mathematics
Languages : en
Pages : 303
Book Description
This monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three. The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds. This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019
Publisher: Springer
ISBN: 3319913719
Category : Mathematics
Languages : en
Pages : 303
Book Description
This monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three. The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds. This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019
Strings and Geometry
Author: Clay Mathematics Institute. Summer School
Publisher: American Mathematical Soc.
ISBN: 9780821837153
Category : Mathematics
Languages : en
Pages : 396
Book Description
Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.
Publisher: American Mathematical Soc.
ISBN: 9780821837153
Category : Mathematics
Languages : en
Pages : 396
Book Description
Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.