Author: Jacques Sakarovitch
Publisher: Cambridge University Press
ISBN: 1139643797
Category : Mathematics
Languages : en
Pages : 818
Book Description
Automata theory lies at the foundation of computer science, and is vital to a theoretical understanding of how computers work and what constitutes formal methods. This treatise gives a rigorous account of the topic and illuminates its real meaning by looking at the subject in a variety of ways. The first part of the book is organised around notions of rationality and recognisability. The second part deals with relations between words realised by finite automata, which not only exemplifies the automata theory but also illustrates the variety of its methods and its fields of application. Many exercises are included, ranging from those that test the reader, to those that are technical results, to those that extend ideas presented in the text. Solutions or answers to many of these are included in the book.
Elements of Automata Theory
Author: Jacques Sakarovitch
Publisher: Cambridge University Press
ISBN: 1139643797
Category : Mathematics
Languages : en
Pages : 818
Book Description
Automata theory lies at the foundation of computer science, and is vital to a theoretical understanding of how computers work and what constitutes formal methods. This treatise gives a rigorous account of the topic and illuminates its real meaning by looking at the subject in a variety of ways. The first part of the book is organised around notions of rationality and recognisability. The second part deals with relations between words realised by finite automata, which not only exemplifies the automata theory but also illustrates the variety of its methods and its fields of application. Many exercises are included, ranging from those that test the reader, to those that are technical results, to those that extend ideas presented in the text. Solutions or answers to many of these are included in the book.
Publisher: Cambridge University Press
ISBN: 1139643797
Category : Mathematics
Languages : en
Pages : 818
Book Description
Automata theory lies at the foundation of computer science, and is vital to a theoretical understanding of how computers work and what constitutes formal methods. This treatise gives a rigorous account of the topic and illuminates its real meaning by looking at the subject in a variety of ways. The first part of the book is organised around notions of rationality and recognisability. The second part deals with relations between words realised by finite automata, which not only exemplifies the automata theory but also illustrates the variety of its methods and its fields of application. Many exercises are included, ranging from those that test the reader, to those that are technical results, to those that extend ideas presented in the text. Solutions or answers to many of these are included in the book.
Introduction to Automata Theory, Languages, and Computation
Author: John E. Hopcroft
Publisher:
ISBN: 9781292039053
Category : Computational complexity
Languages : en
Pages : 488
Book Description
This classic book on formal languages, automata theory, and computational complexity has been updated to present theoretical concepts in a concise and straightforward manner with the increase of hands-on, practical applications. This new edition comes with Gradiance, an online assessment tool developed for computer science. Please note, Gradiance is no longer available with this book, as we no longer support this product.
Publisher:
ISBN: 9781292039053
Category : Computational complexity
Languages : en
Pages : 488
Book Description
This classic book on formal languages, automata theory, and computational complexity has been updated to present theoretical concepts in a concise and straightforward manner with the increase of hands-on, practical applications. This new edition comes with Gradiance, an online assessment tool developed for computer science. Please note, Gradiance is no longer available with this book, as we no longer support this product.
Automata, Computability and Complexity
Author: Elaine Rich
Publisher: Prentice Hall
ISBN: 0132288060
Category : Computers
Languages : en
Pages : 1120
Book Description
For upper level courses on Automata. Combining classic theory with unique applications, this crisp narrative is supported by abundant examples and clarifies key concepts by introducing important uses of techniques in real systems. Broad-ranging coverage allows instructors to easily customise course material to fit their unique requirements.
Publisher: Prentice Hall
ISBN: 0132288060
Category : Computers
Languages : en
Pages : 1120
Book Description
For upper level courses on Automata. Combining classic theory with unique applications, this crisp narrative is supported by abundant examples and clarifies key concepts by introducing important uses of techniques in real systems. Broad-ranging coverage allows instructors to easily customise course material to fit their unique requirements.
Theory Of Automata, Formal Languages And Computation (As Per Uptu Syllabus)
Author: S.P.Eugene Xavier
Publisher: New Age International
ISBN: 8122416551
Category : Computational complexity
Languages : en
Pages : 35
Book Description
This Book Is Aimed At Providing An Introduction To The Basic Models Of Computability To The Undergraduate Students. This Book Is Devoted To Finite Automata And Their Properties. Pushdown Automata Provides A Class Of Models And Enables The Analysis Of Context-Free Languages. Turing Machines Have Been Introduced And The Book Discusses Computability And Decidability. A Number Of Problems With Solutions Have Been Provided For Each Chapter. A Lot Of Exercises Have Been Given With Hints/Answers To Most Of These Tutorial Problems.
Publisher: New Age International
ISBN: 8122416551
Category : Computational complexity
Languages : en
Pages : 35
Book Description
This Book Is Aimed At Providing An Introduction To The Basic Models Of Computability To The Undergraduate Students. This Book Is Devoted To Finite Automata And Their Properties. Pushdown Automata Provides A Class Of Models And Enables The Analysis Of Context-Free Languages. Turing Machines Have Been Introduced And The Book Discusses Computability And Decidability. A Number Of Problems With Solutions Have Been Provided For Each Chapter. A Lot Of Exercises Have Been Given With Hints/Answers To Most Of These Tutorial Problems.
Applications of Automata Theory and Algebra
Author: John L. Rhodes
Publisher: World Scientific
ISBN: 9812836969
Category : Mathematics
Languages : en
Pages : 293
Book Description
This book was originally written in 1969 by Berkeley mathematician John Rhodes. It is the founding work in what is now called algebraic engineering, an emerging field created by using the unifying scheme of finite state machine models and their complexity to tie together many fields: finite group theory, semigroup theory, automata and sequential machine theory, finite phase space physics, metabolic and evolutionary biology, epistemology, mathematical theory of psychoanalysis, philosophy, and game theory. The author thus introduced a completely original algebraic approach to complexity and the understanding of finite systems. The unpublished manuscript, often referred to as "The Wild Book," became an underground classic, continually requested in manuscript form, and read by many leading researchers in mathematics, complex systems, artificial intelligence, and systems biology. Yet it has never been available in print until now. This first published edition has been edited and updated by Chrystopher Nehaniv for the 21st century. Its novel and rigorous development of the mathematical theory of complexity via algebraic automata theory reveals deep and unexpected connections between algebra (semigroups) and areas of science and engineering. Co-founded by John Rhodes and Kenneth Krohn in 1962, algebraic automata theory has grown into a vibrant area of research, including the complexity of automata, and semigroups and machines from an algebraic viewpoint, and which also touches on infinite groups, and other areas of algebra. This book sets the stage for the application of algebraic automata theory to areas outside mathematics. The material and references have been brought up to date bythe editor as much as possible, yet the book retains its distinct character and the bold yet rigorous style of the author. Included are treatments of topics such as models of time as algebra via semigroup theory; evolution-complexity relations applicable to both ontogeny and evolution; an approach to classification of biological reactions and pathways; the relationships among coordinate systems, symmetry, and conservation principles in physics; discussion of "punctuated equilibrium" (prior to Stephen Jay Gould); games; and applications to psychology, psychoanalysis, epistemology, and the purpose of life. The approach and contents will be of interest to a variety of researchers and students in algebra as well as to the diverse, growing areas of applications of algebra in science and engineering. Moreover, many parts of the book will be intelligible to non-mathematicians, including students and experts from diverse backgrounds.
Publisher: World Scientific
ISBN: 9812836969
Category : Mathematics
Languages : en
Pages : 293
Book Description
This book was originally written in 1969 by Berkeley mathematician John Rhodes. It is the founding work in what is now called algebraic engineering, an emerging field created by using the unifying scheme of finite state machine models and their complexity to tie together many fields: finite group theory, semigroup theory, automata and sequential machine theory, finite phase space physics, metabolic and evolutionary biology, epistemology, mathematical theory of psychoanalysis, philosophy, and game theory. The author thus introduced a completely original algebraic approach to complexity and the understanding of finite systems. The unpublished manuscript, often referred to as "The Wild Book," became an underground classic, continually requested in manuscript form, and read by many leading researchers in mathematics, complex systems, artificial intelligence, and systems biology. Yet it has never been available in print until now. This first published edition has been edited and updated by Chrystopher Nehaniv for the 21st century. Its novel and rigorous development of the mathematical theory of complexity via algebraic automata theory reveals deep and unexpected connections between algebra (semigroups) and areas of science and engineering. Co-founded by John Rhodes and Kenneth Krohn in 1962, algebraic automata theory has grown into a vibrant area of research, including the complexity of automata, and semigroups and machines from an algebraic viewpoint, and which also touches on infinite groups, and other areas of algebra. This book sets the stage for the application of algebraic automata theory to areas outside mathematics. The material and references have been brought up to date bythe editor as much as possible, yet the book retains its distinct character and the bold yet rigorous style of the author. Included are treatments of topics such as models of time as algebra via semigroup theory; evolution-complexity relations applicable to both ontogeny and evolution; an approach to classification of biological reactions and pathways; the relationships among coordinate systems, symmetry, and conservation principles in physics; discussion of "punctuated equilibrium" (prior to Stephen Jay Gould); games; and applications to psychology, psychoanalysis, epistemology, and the purpose of life. The approach and contents will be of interest to a variety of researchers and students in algebra as well as to the diverse, growing areas of applications of algebra in science and engineering. Moreover, many parts of the book will be intelligible to non-mathematicians, including students and experts from diverse backgrounds.
Theory of Computer Science
Author: K. L. P. Mishra
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120329686
Category : Computers
Languages : en
Pages : 437
Book Description
This Third Edition, in response to the enthusiastic reception given by academia and students to the previous edition, offers a cohesive presentation of all aspects of theoretical computer science, namely automata, formal languages, computability, and complexity. Besides, it includes coverage of mathematical preliminaries. NEW TO THIS EDITION • Expanded sections on pigeonhole principle and the principle of induction (both in Chapter 2) • A rigorous proof of Kleene’s theorem (Chapter 5) • Major changes in the chapter on Turing machines (TMs) – A new section on high-level description of TMs – Techniques for the construction of TMs – Multitape TM and nondeterministic TM • A new chapter (Chapter 10) on decidability and recursively enumerable languages • A new chapter (Chapter 12) on complexity theory and NP-complete problems • A section on quantum computation in Chapter 12. • KEY FEATURES • Objective-type questions in each chapter—with answers provided at the end of the book. • Eighty-three additional solved examples—added as Supplementary Examples in each chapter. • Detailed solutions at the end of the book to chapter-end exercises. The book is designed to meet the needs of the undergraduate and postgraduate students of computer science and engineering as well as those of the students offering courses in computer applications.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120329686
Category : Computers
Languages : en
Pages : 437
Book Description
This Third Edition, in response to the enthusiastic reception given by academia and students to the previous edition, offers a cohesive presentation of all aspects of theoretical computer science, namely automata, formal languages, computability, and complexity. Besides, it includes coverage of mathematical preliminaries. NEW TO THIS EDITION • Expanded sections on pigeonhole principle and the principle of induction (both in Chapter 2) • A rigorous proof of Kleene’s theorem (Chapter 5) • Major changes in the chapter on Turing machines (TMs) – A new section on high-level description of TMs – Techniques for the construction of TMs – Multitape TM and nondeterministic TM • A new chapter (Chapter 10) on decidability and recursively enumerable languages • A new chapter (Chapter 12) on complexity theory and NP-complete problems • A section on quantum computation in Chapter 12. • KEY FEATURES • Objective-type questions in each chapter—with answers provided at the end of the book. • Eighty-three additional solved examples—added as Supplementary Examples in each chapter. • Detailed solutions at the end of the book to chapter-end exercises. The book is designed to meet the needs of the undergraduate and postgraduate students of computer science and engineering as well as those of the students offering courses in computer applications.
Introduction to Automata Theory, Formal Languages and Computation
Author: Shyamalendu Kandar
Publisher: Pearson Education India
ISBN: 9332516324
Category : Formal languages
Languages : en
Pages : 657
Book Description
Formal languages and automata theory is the study of abstract machines and how these can be used for solving problems. The book has a simple and exhaustive approach to topics like automata theory, formal languages and theory of computation. These descriptions are followed by numerous relevant examples related to the topic. A brief introductory chapter on compilers explaining its relation to theory of computation is also given.
Publisher: Pearson Education India
ISBN: 9332516324
Category : Formal languages
Languages : en
Pages : 657
Book Description
Formal languages and automata theory is the study of abstract machines and how these can be used for solving problems. The book has a simple and exhaustive approach to topics like automata theory, formal languages and theory of computation. These descriptions are followed by numerous relevant examples related to the topic. A brief introductory chapter on compilers explaining its relation to theory of computation is also given.
Cellular Automata
Author: Howard Gutowitz
Publisher: MIT Press
ISBN: 9780262570862
Category : Computers
Languages : en
Pages : 510
Book Description
The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Cellular automata, dynamic systems in which space and time are discrete, are yielding interesting applications in both the physical and natural sciences. The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Chapters cover mathematical analysis, the structure of the space of cellular automata, learning rules with specified properties: cellular automata in biology, physics, chemistry, and computation theory; and generalizations of cellular automata in neural nets, Boolean nets, and coupled map lattices.Current work on cellular automata may be viewed as revolving around two central and closely related problems: the forward problem and the inverse problem. The forward problem concerns the description of properties of given cellular automata. Properties considered include reversibility, invariants, criticality, fractal dimension, and computational power. The role of cellular automata in computation theory is seen as a particularly exciting venue for exploring parallel computers as theoretical and practical tools in mathematical physics. The inverse problem, an area of study gaining prominence particularly in the natural sciences, involves designing rules that possess specified properties or perform specified task. A long-term goal is to develop a set of techniques that can find a rule or set of rules that can reproduce quantitative observations of a physical system. Studies of the inverse problem take up the organization and structure of the set of automata, in particular the parameterization of the space of cellular automata. Optimization and learning techniques, like the genetic algorithm and adaptive stochastic cellular automata are applied to find cellular automaton rules that model such physical phenomena as crystal growth or perform such adaptive-learning tasks as balancing an inverted pole.Howard Gutowitz is Collaborateur in the Service de Physique du Solide et Résonance Magnetique, Commissariat a I'Energie Atomique, Saclay, France.
Publisher: MIT Press
ISBN: 9780262570862
Category : Computers
Languages : en
Pages : 510
Book Description
The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Cellular automata, dynamic systems in which space and time are discrete, are yielding interesting applications in both the physical and natural sciences. The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Chapters cover mathematical analysis, the structure of the space of cellular automata, learning rules with specified properties: cellular automata in biology, physics, chemistry, and computation theory; and generalizations of cellular automata in neural nets, Boolean nets, and coupled map lattices.Current work on cellular automata may be viewed as revolving around two central and closely related problems: the forward problem and the inverse problem. The forward problem concerns the description of properties of given cellular automata. Properties considered include reversibility, invariants, criticality, fractal dimension, and computational power. The role of cellular automata in computation theory is seen as a particularly exciting venue for exploring parallel computers as theoretical and practical tools in mathematical physics. The inverse problem, an area of study gaining prominence particularly in the natural sciences, involves designing rules that possess specified properties or perform specified task. A long-term goal is to develop a set of techniques that can find a rule or set of rules that can reproduce quantitative observations of a physical system. Studies of the inverse problem take up the organization and structure of the set of automata, in particular the parameterization of the space of cellular automata. Optimization and learning techniques, like the genetic algorithm and adaptive stochastic cellular automata are applied to find cellular automaton rules that model such physical phenomena as crystal growth or perform such adaptive-learning tasks as balancing an inverted pole.Howard Gutowitz is Collaborateur in the Service de Physique du Solide et Résonance Magnetique, Commissariat a I'Energie Atomique, Saclay, France.
Automata Theory
Author: Matthew Simon
Publisher: World Scientific
ISBN: 9789810237530
Category : Computers
Languages : en
Pages : 446
Book Description
This book covers substantially the central ideas of a one semester course in automata theory. It is oriented towards a mathematical perspective that is understandable to non-mathematicians. Comprehension is greatly aided by many examples, especially on the Chomsky ? Schtzenberger theorem, which is not found in most books in this field. Special attention is given to semiautomata theory: the relationship between semigroups and sequential machines (including Green's relations), Schtzenberger's maximal subgroup, von Neumann inverses, wreath products, transducers using matrix notation, shuffle and Kronecker shuffle products. Methods of formal power series, the ambiguity index and linear languages are discussed. Core material includes finite state automata, regular expressions, Kleene's theorem, Chomsky's hierarchy and transformations of grammars. Ambiguous grammars (not limited to context-free grammars) and modal logics are briefly discussed. Turing machine variants with many examples, pushdown automata and their state transition diagrams and parsers, linear-bounded automata/2-PDA and Kuroda normal form are also discussed. A brief study of Lindenmeyer systems is offered as a comparison to the theory of Chomsky.
Publisher: World Scientific
ISBN: 9789810237530
Category : Computers
Languages : en
Pages : 446
Book Description
This book covers substantially the central ideas of a one semester course in automata theory. It is oriented towards a mathematical perspective that is understandable to non-mathematicians. Comprehension is greatly aided by many examples, especially on the Chomsky ? Schtzenberger theorem, which is not found in most books in this field. Special attention is given to semiautomata theory: the relationship between semigroups and sequential machines (including Green's relations), Schtzenberger's maximal subgroup, von Neumann inverses, wreath products, transducers using matrix notation, shuffle and Kronecker shuffle products. Methods of formal power series, the ambiguity index and linear languages are discussed. Core material includes finite state automata, regular expressions, Kleene's theorem, Chomsky's hierarchy and transformations of grammars. Ambiguous grammars (not limited to context-free grammars) and modal logics are briefly discussed. Turing machine variants with many examples, pushdown automata and their state transition diagrams and parsers, linear-bounded automata/2-PDA and Kuroda normal form are also discussed. A brief study of Lindenmeyer systems is offered as a comparison to the theory of Chomsky.
Automata Theory and its Applications
Author: Bakhadyr Khoussainov
Publisher: Springer Science & Business Media
ISBN: 1461201713
Category : Mathematics
Languages : en
Pages : 442
Book Description
The theory of finite automata on finite stings, infinite strings, and trees has had a dis tinguished history. First, automata were introduced to represent idealized switching circuits augmented by unit delays. This was the period of Shannon, McCullouch and Pitts, and Howard Aiken, ending about 1950. Then in the 1950s there was the work of Kleene on representable events, of Myhill and Nerode on finite coset congruence relations on strings, of Rabin and Scott on power set automata. In the 1960s, there was the work of Btichi on automata on infinite strings and the second order theory of one successor, then Rabin's 1968 result on automata on infinite trees and the second order theory of two successors. The latter was a mystery until the introduction of forgetful determinacy games by Gurevich and Harrington in 1982. Each of these developments has successful and prospective applications in computer science. They should all be part of every computer scientist's toolbox. Suppose that we take a computer scientist's point of view. One can think of finite automata as the mathematical representation of programs that run us ing fixed finite resources. Then Btichi's SIS can be thought of as a theory of programs which run forever (like operating systems or banking systems) and are deterministic. Finally, Rabin's S2S is a theory of programs which run forever and are nondeterministic. Indeed many questions of verification can be decided in the decidable theories of these automata.
Publisher: Springer Science & Business Media
ISBN: 1461201713
Category : Mathematics
Languages : en
Pages : 442
Book Description
The theory of finite automata on finite stings, infinite strings, and trees has had a dis tinguished history. First, automata were introduced to represent idealized switching circuits augmented by unit delays. This was the period of Shannon, McCullouch and Pitts, and Howard Aiken, ending about 1950. Then in the 1950s there was the work of Kleene on representable events, of Myhill and Nerode on finite coset congruence relations on strings, of Rabin and Scott on power set automata. In the 1960s, there was the work of Btichi on automata on infinite strings and the second order theory of one successor, then Rabin's 1968 result on automata on infinite trees and the second order theory of two successors. The latter was a mystery until the introduction of forgetful determinacy games by Gurevich and Harrington in 1982. Each of these developments has successful and prospective applications in computer science. They should all be part of every computer scientist's toolbox. Suppose that we take a computer scientist's point of view. One can think of finite automata as the mathematical representation of programs that run us ing fixed finite resources. Then Btichi's SIS can be thought of as a theory of programs which run forever (like operating systems or banking systems) and are deterministic. Finally, Rabin's S2S is a theory of programs which run forever and are nondeterministic. Indeed many questions of verification can be decided in the decidable theories of these automata.