Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics

Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics PDF Author: Roland Glowinski
Publisher: SIAM
ISBN: 0898712300
Category : Science
Languages : en
Pages : 301

Get Book

Book Description
This volume deals with the numerical simulation of the behavior of continuous media by augmented Lagrangian and operator-splitting methods.

Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics

Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics PDF Author: Roland Glowinski
Publisher: SIAM
ISBN: 0898712300
Category : Science
Languages : en
Pages : 301

Get Book

Book Description
This volume deals with the numerical simulation of the behavior of continuous media by augmented Lagrangian and operator-splitting methods.

Splitting Methods in Communication, Imaging, Science, and Engineering

Splitting Methods in Communication, Imaging, Science, and Engineering PDF Author: Roland Glowinski
Publisher: Springer
ISBN: 3319415891
Category : Mathematics
Languages : en
Pages : 820

Get Book

Book Description
This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas.

Fixed-Point Algorithms for Inverse Problems in Science and Engineering

Fixed-Point Algorithms for Inverse Problems in Science and Engineering PDF Author: Heinz H. Bauschke
Publisher: Springer Science & Business Media
ISBN: 1441995692
Category : Mathematics
Languages : en
Pages : 409

Get Book

Book Description
"Fixed-Point Algorithms for Inverse Problems in Science and Engineering" presents some of the most recent work from top-notch researchers studying projection and other first-order fixed-point algorithms in several areas of mathematics and the applied sciences. The material presented provides a survey of the state-of-the-art theory and practice in fixed-point algorithms, identifying emerging problems driven by applications, and discussing new approaches for solving these problems. This book incorporates diverse perspectives from broad-ranging areas of research including, variational analysis, numerical linear algebra, biotechnology, materials science, computational solid-state physics, and chemistry. Topics presented include: Theory of Fixed-point algorithms: convex analysis, convex optimization, subdifferential calculus, nonsmooth analysis, proximal point methods, projection methods, resolvent and related fixed-point theoretic methods, and monotone operator theory. Numerical analysis of fixed-point algorithms: choice of step lengths, of weights, of blocks for block-iterative and parallel methods, and of relaxation parameters; regularization of ill-posed problems; numerical comparison of various methods. Areas of Applications: engineering (image and signal reconstruction and decompression problems), computer tomography and radiation treatment planning (convex feasibility problems), astronomy (adaptive optics), crystallography (molecular structure reconstruction), computational chemistry (molecular structure simulation) and other areas. Because of the variety of applications presented, this book can easily serve as a basis for new and innovated research and collaboration.

Level Set and PDE Based Reconstruction Methods in Imaging

Level Set and PDE Based Reconstruction Methods in Imaging PDF Author: Martin Burger
Publisher: Springer
ISBN: 3319017128
Category : Mathematics
Languages : en
Pages : 329

Get Book

Book Description
This book takes readers on a tour through modern methods in image analysis and reconstruction based on level set and PDE techniques, the major focus being on morphological and geometric structures in images. The aspects covered include edge-sharpening image reconstruction and denoising, segmentation and shape analysis in images, and image matching. For each, the lecture notes provide insights into the basic analysis of modern variational and PDE-based techniques, as well as computational aspects and applications.

Big Data over Networks

Big Data over Networks PDF Author: Shuguang Cui
Publisher: Cambridge University Press
ISBN: 1316445275
Category : Technology & Engineering
Languages : en
Pages : 459

Get Book

Book Description
Utilising both key mathematical tools and state-of-the-art research results, this text explores the principles underpinning large-scale information processing over networks and examines the crucial interaction between big data and its associated communication, social and biological networks. Written by experts in the diverse fields of machine learning, optimisation, statistics, signal processing, networking, communications, sociology and biology, this book employs two complementary approaches: first analysing how the underlying network constrains the upper-layer of collaborative big data processing, and second, examining how big data processing may boost performance in various networks. Unifying the broad scope of the book is the rigorous mathematical treatment of the subjects, which is enriched by in-depth discussion of future directions and numerous open-ended problems that conclude each chapter. Readers will be able to master the fundamental principles for dealing with big data over large systems, making it essential reading for graduate students, scientific researchers and industry practitioners alike.

Processing, Analyzing and Learning of Images, Shapes, and Forms:

Processing, Analyzing and Learning of Images, Shapes, and Forms: PDF Author: Xue-Cheng Tai
Publisher: North Holland
ISBN: 0444641408
Category :
Languages : en
Pages : 704

Get Book

Book Description
Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2, Volume 20, surveys the contemporary developments relating to the analysis and learning of images, shapes and forms, covering mathematical models and quick computational techniques. Chapter cover Alternating Diffusion: A Geometric Approach for Sensor Fusion, Generating Structured TV-based Priors and Associated Primal-dual Methods, Graph-based Optimization Approaches for Machine Learning, Uncertainty Quantification and Networks, Extrinsic Shape Analysis from Boundary Representations, Efficient Numerical Methods for Gradient Flows and Phase-field Models, Recent Advances in Denoising of Manifold-Valued Images, Optimal Registration of Images, Surfaces and Shapes, and much more. Covers contemporary developments relating to the analysis and learning of images, shapes and forms Presents mathematical models and quick computational techniques relating to the topic Provides broad coverage, with sample chapters presenting content on Alternating Diffusion and Generating Structured TV-based Priors and Associated Primal-dual Methods

Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2

Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2 PDF Author:
Publisher: Elsevier
ISBN: 0444641416
Category : Mathematics
Languages : en
Pages : 706

Get Book

Book Description
Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2, Volume 20, surveys the contemporary developments relating to the analysis and learning of images, shapes and forms, covering mathematical models and quick computational techniques. Chapter cover Alternating Diffusion: A Geometric Approach for Sensor Fusion, Generating Structured TV-based Priors and Associated Primal-dual Methods, Graph-based Optimization Approaches for Machine Learning, Uncertainty Quantification and Networks, Extrinsic Shape Analysis from Boundary Representations, Efficient Numerical Methods for Gradient Flows and Phase-field Models, Recent Advances in Denoising of Manifold-Valued Images, Optimal Registration of Images, Surfaces and Shapes, and much more. Covers contemporary developments relating to the analysis and learning of images, shapes and forms Presents mathematical models and quick computational techniques relating to the topic Provides broad coverage, with sample chapters presenting content on Alternating Diffusion and Generating Structured TV-based Priors and Associated Primal-dual Methods

Control and Estimation of Distributed Parameter Systems

Control and Estimation of Distributed Parameter Systems PDF Author: Wolfgang Desch
Publisher: Birkhäuser
ISBN: 3034880014
Category : Mathematics
Languages : en
Pages : 270

Get Book

Book Description
Consisting of 16 refereed original contributions, this volume presents a diversified collection of recent results in control of distributed parameter systems. Topics addressed include - optimal control in fluid mechanics - numerical methods for optimal control of partial differential equations - modeling and control of shells - level set methods - mesh adaptation for parameter estimation problems - shape optimization Advanced graduate students and researchers will find the book an excellent guide to the forefront of control and estimation of distributed parameter systems.

Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations

Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations PDF Author: Tarek Mathew
Publisher: Springer Science & Business Media
ISBN: 354077209X
Category : Mathematics
Languages : en
Pages : 775

Get Book

Book Description
Domain decomposition methods are divide and conquer computational methods for the parallel solution of partial differential equations of elliptic or parabolic type. The methodology includes iterative algorithms, and techniques for non-matching grid discretizations and heterogeneous approximations. This book serves as a matrix oriented introduction to domain decomposition methodology. A wide range of topics are discussed include hybrid formulations, Schwarz, and many more.

Geometrically Unfitted Finite Element Methods and Applications

Geometrically Unfitted Finite Element Methods and Applications PDF Author: Stéphane P. A. Bordas
Publisher: Springer
ISBN: 3319714317
Category : Mathematics
Languages : en
Pages : 361

Get Book

Book Description
This book provides a snapshot of the state of the art of the rapidly evolving field of integration of geometric data in finite element computations. The contributions to this volume, based on research presented at the UCL workshop on the topic in January 2016, include three review papers on core topics such as fictitious domain methods for elasticity, trace finite element methods for partial differential equations defined on surfaces, and Nitsche’s method for contact problems. Five chapters present original research articles on related theoretical topics, including Lagrange multiplier methods, interface problems, bulk-surface coupling, and approximation of partial differential equations on moving domains. Finally, two chapters discuss advanced applications such as crack propagation or flow in fractured poroelastic media. This is the first volume that provides a comprehensive overview of the field of unfitted finite element methods, including recent techniques such as cutFEM, traceFEM, ghost penalty, and augmented Lagrangian techniques. It is aimed at researchers in applied mathematics, scientific computing or computational engineering.