Audio Source Separation

Audio Source Separation PDF Author: Shoji Makino
Publisher: Springer
ISBN: 3319730312
Category : Technology & Engineering
Languages : en
Pages : 389

Get Book Here

Book Description
This book provides the first comprehensive overview of the fascinating topic of audio source separation based on non-negative matrix factorization, deep neural networks, and sparse component analysis. The first section of the book covers single channel source separation based on non-negative matrix factorization (NMF). After an introduction to the technique, two further chapters describe separation of known sources using non-negative spectrogram factorization, and temporal NMF models. In section two, NMF methods are extended to multi-channel source separation. Section three introduces deep neural network (DNN) techniques, with chapters on multichannel and single channel separation, and a further chapter on DNN based mask estimation for monaural speech separation. In section four, sparse component analysis (SCA) is discussed, with chapters on source separation using audio directional statistics modelling, multi-microphone MMSE-based techniques and diffusion map methods. The book brings together leading researchers to provide tutorial-like and in-depth treatments on major audio source separation topics, with the objective of becoming the definitive source for a comprehensive, authoritative, and accessible treatment. This book is written for graduate students and researchers who are interested in audio source separation techniques based on NMF, DNN and SCA.

Audio Source Separation

Audio Source Separation PDF Author: Shoji Makino
Publisher: Springer
ISBN: 3319730312
Category : Technology & Engineering
Languages : en
Pages : 389

Get Book Here

Book Description
This book provides the first comprehensive overview of the fascinating topic of audio source separation based on non-negative matrix factorization, deep neural networks, and sparse component analysis. The first section of the book covers single channel source separation based on non-negative matrix factorization (NMF). After an introduction to the technique, two further chapters describe separation of known sources using non-negative spectrogram factorization, and temporal NMF models. In section two, NMF methods are extended to multi-channel source separation. Section three introduces deep neural network (DNN) techniques, with chapters on multichannel and single channel separation, and a further chapter on DNN based mask estimation for monaural speech separation. In section four, sparse component analysis (SCA) is discussed, with chapters on source separation using audio directional statistics modelling, multi-microphone MMSE-based techniques and diffusion map methods. The book brings together leading researchers to provide tutorial-like and in-depth treatments on major audio source separation topics, with the objective of becoming the definitive source for a comprehensive, authoritative, and accessible treatment. This book is written for graduate students and researchers who are interested in audio source separation techniques based on NMF, DNN and SCA.

Audio Source Separation and Speech Enhancement

Audio Source Separation and Speech Enhancement PDF Author: Emmanuel Vincent
Publisher: John Wiley & Sons
ISBN: 1119279895
Category : Technology & Engineering
Languages : en
Pages : 517

Get Book Here

Book Description
Learn the technology behind hearing aids, Siri, and Echo Audio source separation and speech enhancement aim to extract one or more source signals of interest from an audio recording involving several sound sources. These technologies are among the most studied in audio signal processing today and bear a critical role in the success of hearing aids, hands-free phones, voice command and other noise-robust audio analysis systems, and music post-production software. Research on this topic has followed three convergent paths, starting with sensor array processing, computational auditory scene analysis, and machine learning based approaches such as independent component analysis, respectively. This book is the first one to provide a comprehensive overview by presenting the common foundations and the differences between these techniques in a unified setting. Key features: Consolidated perspective on audio source separation and speech enhancement. Both historical perspective and latest advances in the field, e.g. deep neural networks. Diverse disciplines: array processing, machine learning, and statistical signal processing. Covers the most important techniques for both single-channel and multichannel processing. This book provides both introductory and advanced material suitable for people with basic knowledge of signal processing and machine learning. Thanks to its comprehensiveness, it will help students select a promising research track, researchers leverage the acquired cross-domain knowledge to design improved techniques, and engineers and developers choose the right technology for their target application scenario. It will also be useful for practitioners from other fields (e.g., acoustics, multimedia, phonetics, and musicology) willing to exploit audio source separation or speech enhancement as pre-processing tools for their own needs.

Handbook of Blind Source Separation

Handbook of Blind Source Separation PDF Author: Pierre Comon
Publisher: Academic Press
ISBN: 0080884946
Category : Technology & Engineering
Languages : en
Pages : 856

Get Book Here

Book Description
Edited by the people who were forerunners in creating the field, together with contributions from 34 leading international experts, this handbook provides the definitive reference on Blind Source Separation, giving a broad and comprehensive description of all the core principles and methods, numerical algorithms and major applications in the fields of telecommunications, biomedical engineering and audio, acoustic and speech processing. Going beyond a machine learning perspective, the book reflects recent results in signal processing and numerical analysis, and includes topics such as optimization criteria, mathematical tools, the design of numerical algorithms, convolutive mixtures, and time frequency approaches. This Handbook is an ideal reference for university researchers, R&D engineers and graduates wishing to learn the core principles, methods, algorithms, and applications of Blind Source Separation. - Covers the principles and major techniques and methods in one book - Edited by the pioneers in the field with contributions from 34 of the world's experts - Describes the main existing numerical algorithms and gives practical advice on their design - Covers the latest cutting edge topics: second order methods; algebraic identification of under-determined mixtures, time-frequency methods, Bayesian approaches, blind identification under non negativity approaches, semi-blind methods for communications - Shows the applications of the methods to key application areas such as telecommunications, biomedical engineering, speech, acoustic, audio and music processing, while also giving a general method for developing applications

Independent Component Analysis and Signal Separation

Independent Component Analysis and Signal Separation PDF Author: Mike E. Davies
Publisher: Springer Science & Business Media
ISBN: 3540744932
Category : Computers
Languages : en
Pages : 864

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 7th International Conference on Independent Component Analysis and Blind Source Separation, ICA 2007, held in London, UK, in September 2007. It covers algorithms and architectures, applications, medical applications, speech and signal processing, theory, and visual and sensory processing.

Speech Enhancement

Speech Enhancement PDF Author: Shoji Makino
Publisher: Springer Science & Business Media
ISBN: 9783540240396
Category : Hearing
Languages : en
Pages : 432

Get Book Here

Book Description
We live in a noisy world! In all applications (telecommunications, hands-free communications, recording, human-machine interfaces, etc.) that require at least one microphone, the signal of interest is usually contaminated by noise and reverberation. As a result, the microphone signal has to be "cleaned" with digital signal processing tools before it is played out, transmitted, or stored. This book is about speech enhancement. Different well-known and state-of-the-art methods for noise reduction, with one or multiple microphones, are discussed. By speech enhancement, we mean not only noise reduction but also dereverberation and separation of independent signals. These topics are also covered in this book. However, the general emphasis is on noise reduction because of the large number of applications that can benefit from this technology. The goal of this book is to provide a strong reference for researchers, engineers, and graduate students who are interested in the problem of signal and speech enhancement. To do so, we invited well-known experts to contribute chapters covering the state of the art in this focused field. TOC:Introduction.- Study of the Wiener Filter for Noise Reduction.- Statistical Methods for the Enhancement of Noisy Speech.- Single- und Multi-Microphone Spectral Amplitude Estimation Using a Super-Gaussian Speech Model.- From Volatility Modeling of Financial Time-Series to Stochastic Modeling and Enhancement of Speech Signals.- Single-Microphone Noise Suppression for 3G Handsets Based on Weighted Noise Estimation.- Signal Subspace Techniques for Speech Enhancement.- Speech Enhancement: Application of the Kalman Filter in the Estimate-Maximize (EM) Framework.- Speech Distortion Weighted Multichannel Wiener Filtering Techniques for Noise Reduction.- Adpative Microphone Arrays Employing Spatial Quadratic Soft Constraints and Spectral Shaping.- Single-Microphone Blind Dereverberation.- Separation and Dereverberation of Speech Signals with Multiple Microphones.- Frequency-Domain Blind Source Separation.- Subband Based Blind Source Separation.- Real-Time Blind Source Separation for Moving Speech Signals.- Separation of Speech by Computational Auditory Scene Analysis

Speech and Audio Signal Processing

Speech and Audio Signal Processing PDF Author: Ben Gold
Publisher: John Wiley & Sons
ISBN: 0470195363
Category : Technology & Engineering
Languages : en
Pages : 684

Get Book Here

Book Description
When Speech and Audio Signal Processing published in 1999, it stood out from its competition in its breadth of coverage and its accessible, intutiont-based style. This book was aimed at individual students and engineers excited about the broad span of audio processing and curious to understand the available techniques. Since then, with the advent of the iPod in 2001, the field of digital audio and music has exploded, leading to a much greater interest in the technical aspects of audio processing. This Second Edition will update and revise the original book to augment it with new material describing both the enabling technologies of digital music distribution (most significantly the MP3) and a range of exciting new research areas in automatic music content processing (such as automatic transcription, music similarity, etc.) that have emerged in the past five years, driven by the digital music revolution. New chapter topics include: Psychoacoustic Audio Coding, describing MP3 and related audio coding schemes based on psychoacoustic masking of quantization noise Music Transcription, including automatically deriving notes, beats, and chords from music signals. Music Information Retrieval, primarily focusing on audio-based genre classification, artist/style identification, and similarity estimation. Audio Source Separation, including multi-microphone beamforming, blind source separation, and the perception-inspired techniques usually referred to as Computational Auditory Scene Analysis (CASA).

Blind Source Separation

Blind Source Separation PDF Author: Ganesh R. Naik
Publisher: Springer
ISBN: 3642550169
Category : Technology & Engineering
Languages : en
Pages : 549

Get Book Here

Book Description
Blind Source Separation intends to report the new results of the efforts on the study of Blind Source Separation (BSS). The book collects novel research ideas and some training in BSS, independent component analysis (ICA), artificial intelligence and signal processing applications. Furthermore, the research results previously scattered in many journals and conferences worldwide are methodically edited and presented in a unified form. The book is likely to be of interest to university researchers, R&D engineers and graduate students in computer science and electronics who wish to learn the core principles, methods, algorithms and applications of BSS. Dr. Ganesh R. Naik works at University of Technology, Sydney, Australia; Dr. Wenwu Wang works at University of Surrey, UK.

Blind Speech Separation

Blind Speech Separation PDF Author: Shoji Makino
Publisher: Springer Science & Business Media
ISBN: 1402064799
Category : Technology & Engineering
Languages : en
Pages : 439

Get Book Here

Book Description
This is the world’s first edited book on independent component analysis (ICA)-based blind source separation (BSS) of convolutive mixtures of speech. This book brings together a small number of leading researchers to provide tutorial-like and in-depth treatment on major ICA-based BSS topics, with the objective of becoming the definitive source for current, comprehensive, authoritative, and yet accessible treatment.

Music Emotion Recognition

Music Emotion Recognition PDF Author: Yi-Hsuan Yang
Publisher: CRC Press
ISBN: 143985047X
Category : Computers
Languages : en
Pages : 251

Get Book Here

Book Description
Providing a complete review of existing work in music emotion developed in psychology and engineering, Music Emotion Recognition explains how to account for the subjective nature of emotion perception in the development of automatic music emotion recognition (MER) systems. Among the first publications dedicated to automatic MER, it begins with

Intelligent Audio Analysis

Intelligent Audio Analysis PDF Author: Björn W. Schuller
Publisher: Springer Science & Business Media
ISBN: 3642368069
Category : Technology & Engineering
Languages : en
Pages : 358

Get Book Here

Book Description
This book provides the reader with the knowledge necessary for comprehension of the field of Intelligent Audio Analysis. It firstly introduces standard methods and discusses the typical Intelligent Audio Analysis chain going from audio data to audio features to audio recognition. Further, an introduction to audio source separation, and enhancement and robustness are given. After the introductory parts, the book shows several applications for the three types of audio: speech, music, and general sound. Each task is shortly introduced, followed by a description of the specific data and methods applied, experiments and results, and a conclusion for this specific task. The books provides benchmark results and standardized test-beds for a broader range of audio analysis tasks. The main focus thereby lies on the parallel advancement of realism in audio analysis, as too often today’s results are overly optimistic owing to idealized testing conditions, and it serves to stimulate synergies arising from transfer of methods and leads to a holistic audio analysis.