Author: Zhiping Xu
Publisher: Academic Press
ISBN: 9780124077157
Category :
Languages : en
Pages : 0
Book Description
Many exciting problems in mechanics are multiscale in nature. For example, the failure of materials involves breaking of chemical bonds at the atomic scale and crack spreading at larger scales. Mechanics of the cell as a material is defined by the cytoskeleton networks and membrane, as built up from proteins and lipids at the molecular level. To solve these problems, one must be equipped with techniques that are able to address the multiphysics nature at different space and time scales and successfully bridging them. Recently, rapid progresses in micro-, nanomechanics and mechanics of biological materials urges the development of theoretical models and numerical techniques within this scenario. The goal of this book is to bring a pedestrian introduction and in-depth discussion on the key ideas and challenges. In this book, we aim to present the developing field of atomistic simulation methods and their applications in solid mechanics, in a self-contained way. The first part (the algorithm) will cover basics in quantum, classical and statistical mechanics knowledge, also basic concepts and physics of solid mechanics. With this background, the algorithm of molecular dynamics and relative methods such as Monte-Carlo methods are introduced as well. The second part of the book focuses on a number of hot topics in the current mechanics community, from failure of materials, nanomechanics, to mechanics of biological materials. In the third part, extended discussion on novel methods for solving multiscale solid mechanics problems are introduced. Some of them are fresh and still under development at the time the manuscript is prepared and are believed by the authors to be the future direction in this field. The book addresses theoretical issues, and detailed numeric algorithms as well. The readers are assumed to have basic knowledge in engineering mechanics and college physics. Some experience with physical chemistry or solid-state physics will be helpful. Illustrative examples and problems are prepared after many chapters for self-study purposes.
Atomistic Simulation Methods in Solid Mechanics
Author: Zhiping Xu
Publisher: Academic Press
ISBN: 9780124077157
Category :
Languages : en
Pages : 0
Book Description
Many exciting problems in mechanics are multiscale in nature. For example, the failure of materials involves breaking of chemical bonds at the atomic scale and crack spreading at larger scales. Mechanics of the cell as a material is defined by the cytoskeleton networks and membrane, as built up from proteins and lipids at the molecular level. To solve these problems, one must be equipped with techniques that are able to address the multiphysics nature at different space and time scales and successfully bridging them. Recently, rapid progresses in micro-, nanomechanics and mechanics of biological materials urges the development of theoretical models and numerical techniques within this scenario. The goal of this book is to bring a pedestrian introduction and in-depth discussion on the key ideas and challenges. In this book, we aim to present the developing field of atomistic simulation methods and their applications in solid mechanics, in a self-contained way. The first part (the algorithm) will cover basics in quantum, classical and statistical mechanics knowledge, also basic concepts and physics of solid mechanics. With this background, the algorithm of molecular dynamics and relative methods such as Monte-Carlo methods are introduced as well. The second part of the book focuses on a number of hot topics in the current mechanics community, from failure of materials, nanomechanics, to mechanics of biological materials. In the third part, extended discussion on novel methods for solving multiscale solid mechanics problems are introduced. Some of them are fresh and still under development at the time the manuscript is prepared and are believed by the authors to be the future direction in this field. The book addresses theoretical issues, and detailed numeric algorithms as well. The readers are assumed to have basic knowledge in engineering mechanics and college physics. Some experience with physical chemistry or solid-state physics will be helpful. Illustrative examples and problems are prepared after many chapters for self-study purposes.
Publisher: Academic Press
ISBN: 9780124077157
Category :
Languages : en
Pages : 0
Book Description
Many exciting problems in mechanics are multiscale in nature. For example, the failure of materials involves breaking of chemical bonds at the atomic scale and crack spreading at larger scales. Mechanics of the cell as a material is defined by the cytoskeleton networks and membrane, as built up from proteins and lipids at the molecular level. To solve these problems, one must be equipped with techniques that are able to address the multiphysics nature at different space and time scales and successfully bridging them. Recently, rapid progresses in micro-, nanomechanics and mechanics of biological materials urges the development of theoretical models and numerical techniques within this scenario. The goal of this book is to bring a pedestrian introduction and in-depth discussion on the key ideas and challenges. In this book, we aim to present the developing field of atomistic simulation methods and their applications in solid mechanics, in a self-contained way. The first part (the algorithm) will cover basics in quantum, classical and statistical mechanics knowledge, also basic concepts and physics of solid mechanics. With this background, the algorithm of molecular dynamics and relative methods such as Monte-Carlo methods are introduced as well. The second part of the book focuses on a number of hot topics in the current mechanics community, from failure of materials, nanomechanics, to mechanics of biological materials. In the third part, extended discussion on novel methods for solving multiscale solid mechanics problems are introduced. Some of them are fresh and still under development at the time the manuscript is prepared and are believed by the authors to be the future direction in this field. The book addresses theoretical issues, and detailed numeric algorithms as well. The readers are assumed to have basic knowledge in engineering mechanics and college physics. Some experience with physical chemistry or solid-state physics will be helpful. Illustrative examples and problems are prepared after many chapters for self-study purposes.
Atomistic Modeling of Materials Failure
Author: Markus J. Buehler
Publisher: Springer Science & Business Media
ISBN: 0387764267
Category : Science
Languages : en
Pages : 547
Book Description
This is an introduction to molecular and atomistic modeling techniques applied to fracture and deformation of solids, focusing on a variety of brittle, ductile, geometrically confined and biological materials. The overview includes computational methods and techniques operating at the atomic scale, and describes how these techniques can be used to model cracks and other deformation mechanisms. The book aims to make new molecular modeling techniques available to a wider community.
Publisher: Springer Science & Business Media
ISBN: 0387764267
Category : Science
Languages : en
Pages : 547
Book Description
This is an introduction to molecular and atomistic modeling techniques applied to fracture and deformation of solids, focusing on a variety of brittle, ductile, geometrically confined and biological materials. The overview includes computational methods and techniques operating at the atomic scale, and describes how these techniques can be used to model cracks and other deformation mechanisms. The book aims to make new molecular modeling techniques available to a wider community.
Modeling Materials
Author: Ellad B. Tadmor
Publisher: Cambridge University Press
ISBN: 1139500651
Category : Science
Languages : en
Pages : 789
Book Description
Material properties emerge from phenomena on scales ranging from Angstroms to millimeters, and only a multiscale treatment can provide a complete understanding. Materials researchers must therefore understand fundamental concepts and techniques from different fields, and these are presented in a comprehensive and integrated fashion for the first time in this book. Incorporating continuum mechanics, quantum mechanics, statistical mechanics, atomistic simulations and multiscale techniques, the book explains many of the key theoretical ideas behind multiscale modeling. Classical topics are blended with new techniques to demonstrate the connections between different fields and highlight current research trends. Example applications drawn from modern research on the thermo-mechanical properties of crystalline solids are used as a unifying focus throughout the text. Together with its companion book, Continuum Mechanics and Thermodynamics (Cambridge University Press, 2011), this work presents the complete fundamentals of materials modeling for graduate students and researchers in physics, materials science, chemistry and engineering.
Publisher: Cambridge University Press
ISBN: 1139500651
Category : Science
Languages : en
Pages : 789
Book Description
Material properties emerge from phenomena on scales ranging from Angstroms to millimeters, and only a multiscale treatment can provide a complete understanding. Materials researchers must therefore understand fundamental concepts and techniques from different fields, and these are presented in a comprehensive and integrated fashion for the first time in this book. Incorporating continuum mechanics, quantum mechanics, statistical mechanics, atomistic simulations and multiscale techniques, the book explains many of the key theoretical ideas behind multiscale modeling. Classical topics are blended with new techniques to demonstrate the connections between different fields and highlight current research trends. Example applications drawn from modern research on the thermo-mechanical properties of crystalline solids are used as a unifying focus throughout the text. Together with its companion book, Continuum Mechanics and Thermodynamics (Cambridge University Press, 2011), this work presents the complete fundamentals of materials modeling for graduate students and researchers in physics, materials science, chemistry and engineering.
Meshless Methods in Solid Mechanics
Author: Youping Chen
Publisher: Springer Science & Business Media
ISBN: 0387333681
Category : Science
Languages : en
Pages : 211
Book Description
This book covers the fundamentals of continuum mechanics, the integral formulation methods of continuum problems, the basic concepts of finite element methods, and the methodologies, formulations, procedures, and applications of various meshless methods. It also provides general and detailed procedures of meshless analysis on elastostatics, elastodynamics, non-local continuum mechanics and plasticity with a large number of numerical examples. Some basic and important mathematical methods are included in the Appendixes. For readers who want to gain knowledge through hands-on experience, the meshless programs for elastostatics and elastodynamics are provided on an included disc.
Publisher: Springer Science & Business Media
ISBN: 0387333681
Category : Science
Languages : en
Pages : 211
Book Description
This book covers the fundamentals of continuum mechanics, the integral formulation methods of continuum problems, the basic concepts of finite element methods, and the methodologies, formulations, procedures, and applications of various meshless methods. It also provides general and detailed procedures of meshless analysis on elastostatics, elastodynamics, non-local continuum mechanics and plasticity with a large number of numerical examples. Some basic and important mathematical methods are included in the Appendixes. For readers who want to gain knowledge through hands-on experience, the meshless programs for elastostatics and elastodynamics are provided on an included disc.
Atomistic Simulation of Anistropic Crystal Structures at Nanoscale
Author: Jia Fu
Publisher: BoD – Books on Demand
ISBN: 1838802010
Category : Computers
Languages : en
Pages : 180
Book Description
Multiscale simulations of atomistic/continuum coupling in computational materials science, where the scale expands from macro-/micro- to nanoscale, has become a hot research topic. These small units, usually nanostructures, are commonly anisotropic. The development of molecular modeling tools to describe and predict the mechanical properties of structures reveals an undeniable practical importance. Typical anisotropic structures (e.g. cubic, hexagonal, monoclinic) using DFT, MD, and atomic finite element methods are especially interesting, according to the modeling requirement of upscaling structures. It therefore connects nanoscale modeling and continuous patterns of deformation behavior by identifying relevant parameters from smaller to larger scales. These methodologies have the prospect of significant applications. I would like to recommend this book to both beginners and experienced researchers.
Publisher: BoD – Books on Demand
ISBN: 1838802010
Category : Computers
Languages : en
Pages : 180
Book Description
Multiscale simulations of atomistic/continuum coupling in computational materials science, where the scale expands from macro-/micro- to nanoscale, has become a hot research topic. These small units, usually nanostructures, are commonly anisotropic. The development of molecular modeling tools to describe and predict the mechanical properties of structures reveals an undeniable practical importance. Typical anisotropic structures (e.g. cubic, hexagonal, monoclinic) using DFT, MD, and atomic finite element methods are especially interesting, according to the modeling requirement of upscaling structures. It therefore connects nanoscale modeling and continuous patterns of deformation behavior by identifying relevant parameters from smaller to larger scales. These methodologies have the prospect of significant applications. I would like to recommend this book to both beginners and experienced researchers.
Applied Mechanics of Solids
Author: Allan F. Bower
Publisher: CRC Press
ISBN: 1439802483
Category : Science
Languages : en
Pages : 820
Book Description
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o
Publisher: CRC Press
ISBN: 1439802483
Category : Science
Languages : en
Pages : 820
Book Description
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o
Atomistic Simulation of Materials
Author: David J. Srolovitz
Publisher: Springer Science & Business Media
ISBN: 1468457039
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
This book contains proceedings of an international symposium on Atomistic th Simulation of Materials: Beyond Pair Potentials which was held in Chicago from the 25 th to 30 of September 1988, in conjunction with the ASM World Materials Congress. This symposium was financially supported by the Energy Conversion and Utilization Technology Program of the U. S Department of Energy and by the Air Force Office of Scientific Research. A total of fifty four talks were presented of which twenty one were invited. Atomistic simulations are now common in materials research. Such simulations are currently used to determine the structural and thermodynamic properties of crystalline solids, glasses and liquids. They are of particular importance in studies of crystal defects, interfaces and surfaces since their structures and behavior playa dominant role in most materials properties. The utility of atomistic simulations lies in their ability to provide information on those length scales where continuum theory breaks down and instead complex many body problems have to be solved to understand atomic level structures and processes.
Publisher: Springer Science & Business Media
ISBN: 1468457039
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
This book contains proceedings of an international symposium on Atomistic th Simulation of Materials: Beyond Pair Potentials which was held in Chicago from the 25 th to 30 of September 1988, in conjunction with the ASM World Materials Congress. This symposium was financially supported by the Energy Conversion and Utilization Technology Program of the U. S Department of Energy and by the Air Force Office of Scientific Research. A total of fifty four talks were presented of which twenty one were invited. Atomistic simulations are now common in materials research. Such simulations are currently used to determine the structural and thermodynamic properties of crystalline solids, glasses and liquids. They are of particular importance in studies of crystal defects, interfaces and surfaces since their structures and behavior playa dominant role in most materials properties. The utility of atomistic simulations lies in their ability to provide information on those length scales where continuum theory breaks down and instead complex many body problems have to be solved to understand atomic level structures and processes.
Understanding Molecular Simulation
Author: Daan Frenkel
Publisher: Elsevier
ISBN: 0080519989
Category : Science
Languages : en
Pages : 661
Book Description
Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.
Publisher: Elsevier
ISBN: 0080519989
Category : Science
Languages : en
Pages : 661
Book Description
Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.
Multiphysics Modeling: Numerical Methods and Engineering Applications
Author: Qun Zhang
Publisher: Elsevier
ISBN: 0124077374
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
Multiphysics Modeling: Numerical Methods and Engineering Applications: Tsinghua University Press Computational Mechanics Series describes the basic principles and methods for multiphysics modeling, covering related areas of physics such as structure mechanics, fluid dynamics, heat transfer, electromagnetic field, and noise. The book provides the latest information on basic numerical methods, also considering coupled problems spanning fluid-solid interaction, thermal-stress coupling, fluid-solid-thermal coupling, electromagnetic solid thermal fluid coupling, and structure-noise coupling. Users will find a comprehensive book that covers background theory, algorithms, key technologies, and applications for each coupling method. - Presents a wealth of multiphysics modeling methods, issues, and worked examples in a single volume - Provides a go-to resource for coupling and multiphysics problems - Covers the multiphysics details not touched upon in broader numerical methods references, including load transfer between physics, element level strong coupling, and interface strong coupling, amongst others - Discusses practical applications throughout and tackles real-life multiphysics problems across areas such as automotive, aerospace, and biomedical engineering
Publisher: Elsevier
ISBN: 0124077374
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
Multiphysics Modeling: Numerical Methods and Engineering Applications: Tsinghua University Press Computational Mechanics Series describes the basic principles and methods for multiphysics modeling, covering related areas of physics such as structure mechanics, fluid dynamics, heat transfer, electromagnetic field, and noise. The book provides the latest information on basic numerical methods, also considering coupled problems spanning fluid-solid interaction, thermal-stress coupling, fluid-solid-thermal coupling, electromagnetic solid thermal fluid coupling, and structure-noise coupling. Users will find a comprehensive book that covers background theory, algorithms, key technologies, and applications for each coupling method. - Presents a wealth of multiphysics modeling methods, issues, and worked examples in a single volume - Provides a go-to resource for coupling and multiphysics problems - Covers the multiphysics details not touched upon in broader numerical methods references, including load transfer between physics, element level strong coupling, and interface strong coupling, amongst others - Discusses practical applications throughout and tackles real-life multiphysics problems across areas such as automotive, aerospace, and biomedical engineering
Multiscale Materials Modeling for Nanomechanics
Author: Christopher R. Weinberger
Publisher: Springer
ISBN: 3319334808
Category : Technology & Engineering
Languages : en
Pages : 554
Book Description
This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.
Publisher: Springer
ISBN: 3319334808
Category : Technology & Engineering
Languages : en
Pages : 554
Book Description
This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.