Author: Sir Norman Lockyer
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 1402
Book Description
Nature
Author: Sir Norman Lockyer
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 1402
Book Description
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 1402
Book Description
Crystal Defects and Crystalline Interfaces
Author: Walter Bollmann
Publisher: Springer Science & Business Media
ISBN: 3642491731
Category : Science
Languages : en
Pages : 264
Book Description
It is nonnal for the preface to explain the motivation behind the writing of the book. Since many good books dealing with the general theory of crystal defects already exist, a new book has to be especially justified, and here its main justification lies in its treatment of crystal line interfaces. About 1961, the work of the author, essentially based on the fundamental work of Professor F. C. Frank, started to branch away from the main flow of thought in this field and eventually led to a general geometrical theory which is presented as a whole for the first time in this book. Although nearly all that is presented has already been published in different journals and symposia, it might be difficult for the reader to follow that literature, as a new terminology and new methods of analysis had to be developed. Special emphasis is given to discussion and many diagrams are included in order that a clear view of the basic concepts be obtained. Intennediate summaries try to bring out the main points of the chapters. Instead of specific exercises, general suggestions for them are given. The part up to chapter 9 is considered more or less as introductory, so that the book can be studied without specific knowledge of crystals and crystal defects. The presentation of that part developed out of lectures given by the author at the Swiss Federal Institute of Technology (ETH) in Zurich.
Publisher: Springer Science & Business Media
ISBN: 3642491731
Category : Science
Languages : en
Pages : 264
Book Description
It is nonnal for the preface to explain the motivation behind the writing of the book. Since many good books dealing with the general theory of crystal defects already exist, a new book has to be especially justified, and here its main justification lies in its treatment of crystal line interfaces. About 1961, the work of the author, essentially based on the fundamental work of Professor F. C. Frank, started to branch away from the main flow of thought in this field and eventually led to a general geometrical theory which is presented as a whole for the first time in this book. Although nearly all that is presented has already been published in different journals and symposia, it might be difficult for the reader to follow that literature, as a new terminology and new methods of analysis had to be developed. Special emphasis is given to discussion and many diagrams are included in order that a clear view of the basic concepts be obtained. Intennediate summaries try to bring out the main points of the chapters. Instead of specific exercises, general suggestions for them are given. The part up to chapter 9 is considered more or less as introductory, so that the book can be studied without specific knowledge of crystals and crystal defects. The presentation of that part developed out of lectures given by the author at the Swiss Federal Institute of Technology (ETH) in Zurich.
Spectroscopy of Complex Oxide Interfaces
Author: Claudia Cancellieri
Publisher: Springer
ISBN: 3319749897
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This book summarizes the most recent and compelling experimental results for complex oxide interfaces. The results of this book were obtained with the cutting-edge photoemission technique at highest energy resolution. Due to their fascinating properties for new-generation electronic devices and the challenge of investigating buried regions, the book chiefly focuses on complex oxide interfaces. The crucial feature of exploring buried interfaces is the use of soft X-ray angle-resolved photoemission spectroscopy (ARPES) operating on the energy range of a few hundred eV to increase the photoelectron mean free path, enabling the photons to penetrate through the top layers – in contrast to conventional ultraviolet (UV)-ARPES techniques. The results presented here, achieved by different research groups around the world, are summarized in a clearly structured way and discussed in comparison with other photoemission spectroscopy techniques and other oxide materials. They are complemented and supported by the most recent theoretical calculations as well as results of complementary experimental techniques including electron transport and inelastic resonant X-ray scattering.
Publisher: Springer
ISBN: 3319749897
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This book summarizes the most recent and compelling experimental results for complex oxide interfaces. The results of this book were obtained with the cutting-edge photoemission technique at highest energy resolution. Due to their fascinating properties for new-generation electronic devices and the challenge of investigating buried regions, the book chiefly focuses on complex oxide interfaces. The crucial feature of exploring buried interfaces is the use of soft X-ray angle-resolved photoemission spectroscopy (ARPES) operating on the energy range of a few hundred eV to increase the photoelectron mean free path, enabling the photons to penetrate through the top layers – in contrast to conventional ultraviolet (UV)-ARPES techniques. The results presented here, achieved by different research groups around the world, are summarized in a clearly structured way and discussed in comparison with other photoemission spectroscopy techniques and other oxide materials. They are complemented and supported by the most recent theoretical calculations as well as results of complementary experimental techniques including electron transport and inelastic resonant X-ray scattering.
Scanning Transmission Electron Microscopy
Author: Stephen J. Pennycook
Publisher: Springer Science & Business Media
ISBN: 1441972005
Category : Technology & Engineering
Languages : en
Pages : 764
Book Description
Scanning transmission electron microscopy has become a mainstream technique for imaging and analysis at atomic resolution and sensitivity, and the authors of this book are widely credited with bringing the field to its present popularity. Scanning Transmission Electron Microscopy(STEM): Imaging and Analysis will provide a comprehensive explanation of the theory and practice of STEM from introductory to advanced levels, covering the instrument, image formation and scattering theory, and definition and measurement of resolution for both imaging and analysis. The authors will present examples of the use of combined imaging and spectroscopy for solving materials problems in a variety of fields, including condensed matter physics, materials science, catalysis, biology, and nanoscience. Therefore this will be a comprehensive reference for those working in applied fields wishing to use the technique, for graduate students learning microscopy for the first time, and for specialists in other fields of microscopy.
Publisher: Springer Science & Business Media
ISBN: 1441972005
Category : Technology & Engineering
Languages : en
Pages : 764
Book Description
Scanning transmission electron microscopy has become a mainstream technique for imaging and analysis at atomic resolution and sensitivity, and the authors of this book are widely credited with bringing the field to its present popularity. Scanning Transmission Electron Microscopy(STEM): Imaging and Analysis will provide a comprehensive explanation of the theory and practice of STEM from introductory to advanced levels, covering the instrument, image formation and scattering theory, and definition and measurement of resolution for both imaging and analysis. The authors will present examples of the use of combined imaging and spectroscopy for solving materials problems in a variety of fields, including condensed matter physics, materials science, catalysis, biology, and nanoscience. Therefore this will be a comprehensive reference for those working in applied fields wishing to use the technique, for graduate students learning microscopy for the first time, and for specialists in other fields of microscopy.
Ceramic Abstracts
Author: American Ceramic Society
Publisher:
ISBN:
Category : Ceramics
Languages : en
Pages : 1000
Book Description
Publisher:
ISBN:
Category : Ceramics
Languages : en
Pages : 1000
Book Description
Advances in Imaging and Electron Physics
Author:
Publisher: Academic Press
ISBN: 0080961584
Category : Technology & Engineering
Languages : en
Pages : 439
Book Description
Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. This particular volume presents several timely articles on the scanning transmission electron microscope. - Updated with contributions from leading international scholars and industry experts - Discusses hot topic areas and presents current and future research trends - Provides an invaluable reference and guide for physicists, engineers and mathematicians
Publisher: Academic Press
ISBN: 0080961584
Category : Technology & Engineering
Languages : en
Pages : 439
Book Description
Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. This particular volume presents several timely articles on the scanning transmission electron microscope. - Updated with contributions from leading international scholars and industry experts - Discusses hot topic areas and presents current and future research trends - Provides an invaluable reference and guide for physicists, engineers and mathematicians
Electronic Phase Transitions
Author: Yu.V. Kopaev
Publisher: Elsevier
ISBN: 0444600396
Category : Science
Languages : en
Pages : 353
Book Description
Electronic Phase Transitions deals with topics, which are presently at the forefront of scientific research in modern solid-state theory. Anderson localization, which has fundamental implications in many areas of solid-state physics as well as spin glasses, with its influence on quite different research activities such as neural networks, are two examples that are reviewed in this book. The ab initio statistical mechanics of structural phase transitions is another prime example, where the interplay and connection of two unrelated disciplines of solid-state theory - first principle electronic structure calculations and critical phenomena - has given rise to impressive new insights. Clearly, there is more and more need for accurate, stable numerical simulations of models of interacting electrons, presently discussed with great vigor in connection with high-Tc superconductors where the superconducting transition is close to a magnetic transition, i.e. an antiferromagnetic spin structure. These topics and others are discussed and reviewed by leading experts in the field.
Publisher: Elsevier
ISBN: 0444600396
Category : Science
Languages : en
Pages : 353
Book Description
Electronic Phase Transitions deals with topics, which are presently at the forefront of scientific research in modern solid-state theory. Anderson localization, which has fundamental implications in many areas of solid-state physics as well as spin glasses, with its influence on quite different research activities such as neural networks, are two examples that are reviewed in this book. The ab initio statistical mechanics of structural phase transitions is another prime example, where the interplay and connection of two unrelated disciplines of solid-state theory - first principle electronic structure calculations and critical phenomena - has given rise to impressive new insights. Clearly, there is more and more need for accurate, stable numerical simulations of models of interacting electrons, presently discussed with great vigor in connection with high-Tc superconductors where the superconducting transition is close to a magnetic transition, i.e. an antiferromagnetic spin structure. These topics and others are discussed and reviewed by leading experts in the field.
Physics of Transition Metal Oxides
Author: Sadamichi Maekawa
Publisher: Springer Science & Business Media
ISBN: 9783540212935
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
The fact that magnetite (Fe304) was already known in the Greek era as a peculiar mineral is indicative of the long history of transition metal oxides as useful materials. The discovery of high-temperature superconductivity in 1986 has renewed interest in transition metal oxides. High-temperature su perconductors are all cuprates. Why is it? To answer to this question, we must understand the electronic states in the cuprates. Transition metal oxides are also familiar as magnets. They might be found stuck on the door of your kitchen refrigerator. Magnetic materials are valuable not only as magnets but as electronics materials. Manganites have received special attention recently because of their extremely large magnetoresistance, an effect so large that it is called colossal magnetoresistance (CMR). What is the difference between high-temperature superconducting cuprates and CMR manganites? Elements with incomplete d shells in the periodic table are called tran sition elements. Among them, the following eight elements with the atomic numbers from 22 to 29, i. e. , Ti, V, Cr, Mn, Fe, Co, Ni and Cu are the most im portant. These elements make compounds with oxygen and present a variety of properties. High-temperature superconductivity and CMR are examples. Most of the textbooks on magnetism discuss the magnetic properties of transition metal oxides. However, when one studies magnetism using tradi tional textbooks, one finds that the transport properties are not introduced in the initial stages.
Publisher: Springer Science & Business Media
ISBN: 9783540212935
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
The fact that magnetite (Fe304) was already known in the Greek era as a peculiar mineral is indicative of the long history of transition metal oxides as useful materials. The discovery of high-temperature superconductivity in 1986 has renewed interest in transition metal oxides. High-temperature su perconductors are all cuprates. Why is it? To answer to this question, we must understand the electronic states in the cuprates. Transition metal oxides are also familiar as magnets. They might be found stuck on the door of your kitchen refrigerator. Magnetic materials are valuable not only as magnets but as electronics materials. Manganites have received special attention recently because of their extremely large magnetoresistance, an effect so large that it is called colossal magnetoresistance (CMR). What is the difference between high-temperature superconducting cuprates and CMR manganites? Elements with incomplete d shells in the periodic table are called tran sition elements. Among them, the following eight elements with the atomic numbers from 22 to 29, i. e. , Ti, V, Cr, Mn, Fe, Co, Ni and Cu are the most im portant. These elements make compounds with oxygen and present a variety of properties. High-temperature superconductivity and CMR are examples. Most of the textbooks on magnetism discuss the magnetic properties of transition metal oxides. However, when one studies magnetism using tradi tional textbooks, one finds that the transport properties are not introduced in the initial stages.
Hybrid Organic-Inorganic Perovskites
Author: Aline Ferreira
Publisher: John Wiley & Sons
ISBN: 3527344314
Category : Science
Languages : en
Pages : 290
Book Description
Hybrid organic-inorganic perovskites (HOIPs) have attracted substantial interest due to their chemical variability, structural diversity and favorable physical properties the past decade. This materials class encompasses other important families such as formates, azides, dicyanamides, cyanides and dicyanometallates. The book summarizes the chemical variability and structural diversity of all known hybrid organic-inorganic perovskites subclasses including halides, azides, formates, dicyanamides, cyanides and dicyanometallates. It also presents a comprehensive account of their intriguing physical properties, including photovoltaic, optoelectronic, dielectric, magnetic, ferroelectric, ferroelastic and multiferroic properties. Moreover, the current challenges and future opportunities in this exciting field are also been discussed. This timely book shows the readers a complete landscape of hybrid organic-inorganic pervoskites and associated multifuctionalities.
Publisher: John Wiley & Sons
ISBN: 3527344314
Category : Science
Languages : en
Pages : 290
Book Description
Hybrid organic-inorganic perovskites (HOIPs) have attracted substantial interest due to their chemical variability, structural diversity and favorable physical properties the past decade. This materials class encompasses other important families such as formates, azides, dicyanamides, cyanides and dicyanometallates. The book summarizes the chemical variability and structural diversity of all known hybrid organic-inorganic perovskites subclasses including halides, azides, formates, dicyanamides, cyanides and dicyanometallates. It also presents a comprehensive account of their intriguing physical properties, including photovoltaic, optoelectronic, dielectric, magnetic, ferroelectric, ferroelastic and multiferroic properties. Moreover, the current challenges and future opportunities in this exciting field are also been discussed. This timely book shows the readers a complete landscape of hybrid organic-inorganic pervoskites and associated multifuctionalities.
Oxide Electronics
Author: Asim K. Ray
Publisher: John Wiley & Sons
ISBN: 1119529476
Category : Technology & Engineering
Languages : en
Pages : 628
Book Description
Oxide Electronics Multiple disciplines converge in this insightful exploration of complex metal oxides and their functions and properties Oxide Electronics delivers a broad and comprehensive exploration of complex metal oxides designed to meet the multidisciplinary needs of electrical and electronic engineers, physicists, and material scientists. The distinguished author eschews complex mathematics whenever possible and focuses on the physical and functional properties of metal oxides in each chapter. Each of the sixteen chapters featured within the book begins with an abstract and an introduction to the topic, clear explanations are presented with graphical illustrations and relevant equations throughout the book. Numerous supporting references are included, and each chapter is self-contained, making them perfect for use both as a reference and as study material. Readers will learn how and why the field of oxide electronics is a key area of research and exploitation in materials science, electrical engineering, and semiconductor physics. The book encompasses every application area where the functional and electronic properties of various genres of oxides are exploited. Readers will also learn from topics like: Thorough discussions of High-k gate oxide for silicon heterostructure MOSFET devices and semiconductor-dielectric interfaces An exploration of printable high-mobility transparent amorphous oxide semiconductors Treatments of graphene oxide electronics, magnetic oxides, ferroelectric oxides, and materials for spin electronics Examinations of the calcium aluminate binary compound, perovoksites for photovoltaics, and oxide 2Degs Analyses of various applications for oxide electronics, including data storage, microprocessors, biomedical devices, LCDs, photovoltaic cells, TFTs, and sensors Suitable for researchers in semiconductor technology or working in materials science, electrical engineering, and physics, Oxide Electronics will also earn a place in the libraries of private industry researchers like device engineers working on electronic applications of oxide electronics. Engineers working on photovoltaics, sensors, or consumer electronics will also benefit from this book.
Publisher: John Wiley & Sons
ISBN: 1119529476
Category : Technology & Engineering
Languages : en
Pages : 628
Book Description
Oxide Electronics Multiple disciplines converge in this insightful exploration of complex metal oxides and their functions and properties Oxide Electronics delivers a broad and comprehensive exploration of complex metal oxides designed to meet the multidisciplinary needs of electrical and electronic engineers, physicists, and material scientists. The distinguished author eschews complex mathematics whenever possible and focuses on the physical and functional properties of metal oxides in each chapter. Each of the sixteen chapters featured within the book begins with an abstract and an introduction to the topic, clear explanations are presented with graphical illustrations and relevant equations throughout the book. Numerous supporting references are included, and each chapter is self-contained, making them perfect for use both as a reference and as study material. Readers will learn how and why the field of oxide electronics is a key area of research and exploitation in materials science, electrical engineering, and semiconductor physics. The book encompasses every application area where the functional and electronic properties of various genres of oxides are exploited. Readers will also learn from topics like: Thorough discussions of High-k gate oxide for silicon heterostructure MOSFET devices and semiconductor-dielectric interfaces An exploration of printable high-mobility transparent amorphous oxide semiconductors Treatments of graphene oxide electronics, magnetic oxides, ferroelectric oxides, and materials for spin electronics Examinations of the calcium aluminate binary compound, perovoksites for photovoltaics, and oxide 2Degs Analyses of various applications for oxide electronics, including data storage, microprocessors, biomedical devices, LCDs, photovoltaic cells, TFTs, and sensors Suitable for researchers in semiconductor technology or working in materials science, electrical engineering, and physics, Oxide Electronics will also earn a place in the libraries of private industry researchers like device engineers working on electronic applications of oxide electronics. Engineers working on photovoltaics, sensors, or consumer electronics will also benefit from this book.