Atomic Pair Distribution Function Analysis

Atomic Pair Distribution Function Analysis PDF Author: Simon Billinge
Publisher: Oxford University Press
ISBN: 0198885814
Category : Science
Languages : en
Pages : 273

Get Book Here

Book Description
Since the early 1990s the atomic pair distribution function (PDF) analysis of powder diffraction data has undergone something of a revolution in its ability to do just that: yield important structural information beyond the average crystal structure of a material. With the advent of advanced sources, computing and algorithms, it is now useful for studying the structure of nanocrystals, clusters and molecules in solution or otherwise disordered in space, nanoporous materials and things intercalated into them, and to look for local distortions and defects in crystals. It can be used in a time-resolved way to study structural changes taking place during synthesis and in operating devices, and to map heterogeneous systems. Although the experiments are somewhat straightforward, there can be a gap in knowledge when trying to use PDF to extract structural information by modelling. This book addresses this gap and guides the reader through a series of real life worked examples that gradually increase in complexity so the reader can have the independence and confidence to apply PDF methods to their own research and answer their own scientific questions. The book is intended for graduate students and other research scientists who are new to PDF and want to use the methods but are unsure how to take the next steps to get started.

Atomic Pair Distribution Function Analysis

Atomic Pair Distribution Function Analysis PDF Author: Simon Billinge
Publisher: Oxford University Press
ISBN: 0198885814
Category : Science
Languages : en
Pages : 273

Get Book Here

Book Description
Since the early 1990s the atomic pair distribution function (PDF) analysis of powder diffraction data has undergone something of a revolution in its ability to do just that: yield important structural information beyond the average crystal structure of a material. With the advent of advanced sources, computing and algorithms, it is now useful for studying the structure of nanocrystals, clusters and molecules in solution or otherwise disordered in space, nanoporous materials and things intercalated into them, and to look for local distortions and defects in crystals. It can be used in a time-resolved way to study structural changes taking place during synthesis and in operating devices, and to map heterogeneous systems. Although the experiments are somewhat straightforward, there can be a gap in knowledge when trying to use PDF to extract structural information by modelling. This book addresses this gap and guides the reader through a series of real life worked examples that gradually increase in complexity so the reader can have the independence and confidence to apply PDF methods to their own research and answer their own scientific questions. The book is intended for graduate students and other research scientists who are new to PDF and want to use the methods but are unsure how to take the next steps to get started.

Underneath the Bragg Peaks

Underneath the Bragg Peaks PDF Author: Takeshi Egami
Publisher: Elsevier
ISBN: 0080426980
Category : Science
Languages : en
Pages : 424

Get Book Here

Book Description
Table of contents

Local Structure from Diffraction

Local Structure from Diffraction PDF Author: S.J.L. Billinge
Publisher: Springer Science & Business Media
ISBN: 0306470772
Category : Technology & Engineering
Languages : en
Pages : 397

Get Book Here

Book Description
This series of books, which is published at the rate of about one per year, addresses fundamental problems in materials science. The contents cover a broad range of topics from small clusters of atoms to engineering materials and involve chemistry, physics, materials science and engineering, with length scales ranging from Ångstroms up to millimeters. The emphasis is on basic science rather than on applications. Each book focuses on a single area of current interest and brings together leading experts to give an up-to-date discussion of their work and the work of others. Each article contains enough references that the interested reader can access the relevant literature. Thanks are given to the Center for Fundamental Materials Research at Michigan State University for supporting this series. M.F. Thorpe, Series Editor E-mail: thorpe @ pa.msu.edu East Lansing, Michigan PREFACE One of the most challenging problems in the study of structure is to characterize the atomic short-range order in materials. Long-range order can be determined with a high degree of accuracy by analyzing Bragg peak positions and intensities in data from single crystals or powders. However, information about short-range order is contained in the diffuse scattering intensity. This is difficult to analyze because it is low in absolute intensity (though the integrated intensity may be significant) and widely spread in reciprocal space.

Diffuse Scattering and Defect Structure Simulations

Diffuse Scattering and Defect Structure Simulations PDF Author: Reinhard B. Neder
Publisher: Oxford University Press
ISBN: 0199233691
Category : Computers
Languages : en
Pages : 239

Get Book Here

Book Description
Understanding the atomic structure of complex and time disordered materials relies upon computer simulations of these structures. This cook book provides a unique mixture of simulation know-how and hands on examples. All related files and the program DISCUS are included on a CDROM with the book.

Advanced Characterization Of Nanostructured Materials: Probing The Structure And Dynamics With Synchrotron X-rays And Neutrons

Advanced Characterization Of Nanostructured Materials: Probing The Structure And Dynamics With Synchrotron X-rays And Neutrons PDF Author: Sunil K Sinha
Publisher: World Scientific
ISBN: 9811231524
Category : Science
Languages : en
Pages : 430

Get Book Here

Book Description
Advanced Characterization of Nanostructured Materials — Probing the Structure and Dynamics with Synchrotron X-Rays and Neutrons is a collection of chapters which review the characterization of the structure and internal dynamics of a wide variety of nanostructured materials using various synchrotron X-ray and neutron scattering techniques. It is intended for graduate students and researchers who might be interested in learning about and applying these methods. The authors are well-known practitioners in their fields of research who provide detailed and authoritative accounts of how these techniques have been applied to study systems ranging from thin films and monolayers on solid surfaces and at liquid-air, liquid-liquid and solid-liquid interfaces; nanostructured composite materials; battery materials, and catalytic materials. While there have been a great many books published on nanoscience, there are relatively few that have discussed in one volume detailed synchrotron X-ray and neutron methods for advanced characterization of nanomaterials in thin films, composite materials, catalytic and battery materials and at interfaces. This book should provide an incentive and a reference for researchers in nanomaterials for using these techniques as a powerful way to characterize their samples. It should also help to popularize the use of synchrotron and neutron facilities by the nanoscience community.

Powder Diffraction

Powder Diffraction PDF Author:
Publisher: DIANE Publishing
ISBN: 9781422318324
Category :
Languages : en
Pages : 18

Get Book Here

Book Description


Theory of Simple Liquids

Theory of Simple Liquids PDF Author: Jean-Pierre Hansen
Publisher: Elsevier
ISBN: 0080571018
Category : Science
Languages : en
Pages : 569

Get Book Here

Book Description
This book gives a comprehensive and up-to-date treatment of the theory of "simple" liquids. The new second edition has been rearranged and considerably expanded to give a balanced account both of basic theory and of the advances of the past decade. It presents the main ideas of modern liquid state theory in a way that is both pedagogical and self-contained. The book should be accessible to graduate students and research workers, both experimentalists and theorists, who have a good background in elementary mechanics. Compares theoretical deductions with experimental results Molecular dynamics Monte Carlo computations Covers ionic, metallic, and molecular liquids

Microstructural Characterization of Materials

Microstructural Characterization of Materials PDF Author: David Brandon
Publisher: John Wiley & Sons
ISBN: 1118681487
Category : Technology & Engineering
Languages : en
Pages : 517

Get Book Here

Book Description
Microstructural characterization is usually achieved by allowing some form of probe to interact with a carefully prepared specimen. The most commonly used probes are visible light, X-ray radiation, a high-energy electron beam, or a sharp, flexible needle. These four types of probe form the basis for optical microscopy, X-ray diffraction, electron microscopy, and scanning probe microscopy. Microstructural Characterization of Materials, 2nd Edition is an introduction to the expertise involved in assessing the microstructure of engineering materials and to the experimental methods used for this purpose. Similar to the first edition, this 2nd edition explores the methodology of materials characterization under the three headings of crystal structure, microstructural morphology, and microanalysis. The principal methods of characterization, including diffraction analysis, optical microscopy, electron microscopy, and chemical microanalytical techniques are treated both qualitatively and quantitatively. An additional chapter has been added to the new edition to cover surface probe microscopy, and there are new sections on digital image recording and analysis, orientation imaging microscopy, focused ion-beam instruments, atom-probe microscopy, and 3-D image reconstruction. As well as being fully updated, this second edition also includes revised and expanded examples and exercises, with a solutions manual available at http://develop.wiley.co.uk/microstructural2e/ Microstructural Characterization of Materials, 2nd Edition will appeal to senior undergraduate and graduate students of material science, materials engineering, and materials chemistry, as well as to qualified engineers and more advanced researchers, who will find the book a useful and comprehensive general reference source.

Diffuse X-Ray Scattering and Models of Disorder

Diffuse X-Ray Scattering and Models of Disorder PDF Author: Thomas Richard Welberry
Publisher: Oxford University Press on Demand
ISBN: 0198528582
Category : Science
Languages : en
Pages : 281

Get Book Here

Book Description
Diffuse X-ray scattering is a rich (virtually untapped) source of local structural information over and above that obtained by conventional crystallography. The book aims to show how computer simulation of a model crystal provides a general method by which diffuse scattering of all kinds and from all types of materials can be interpreted and analysed.

EXAFS: Basic Principles and Data Analysis

EXAFS: Basic Principles and Data Analysis PDF Author: Boon K. Teo
Publisher: Springer Science & Business Media
ISBN: 3642500315
Category : Science
Languages : en
Pages : 359

Get Book Here

Book Description
The phenomenon of Extended X-Ray Absorption Fine Structure (EXAFS) has been known for some time and was first treated theoretically by Kronig in the 1930s. Recent developments, initiated by Sayers, Stern, and Lytle in the early 1970s, have led to the recognition of the structural content of this technique. At the same time, the availability of synchrotron radiation has greatly improved both the acquisition and the quality of the EXAFS data over those obtainable from conventional X-ray sources. Such developments have established EXAFS as a powerful tool for structure studies. EXAFS has been successfully applied to a wide range of significant scientific and technological systems in many diverse fields such as inorganic chemistry, biochemistry, catalysis, material sciences, etc. It is extremely useful for systems where single-crystal diffraction techniques are not readily applicable (e.g., gas, liquid, solution, amorphous and polycrystalline solids, surfaces, polymer, etc.). Despite the fact that the EXAFS technique and applications have matured tremendously over the past decade or so, no introductory textbook exists. EXAFS: Basic Principles and Data Analysis represents my modest attempt to fill such a gap. In this book, I aim to introduce the subject matter to the novice and to help alleviate the confusion in EXAFS data analysis, which, although becoming more and more routine, is still a rather tricky endeavor and may, at times, discourage the beginners.